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Abstract

This mid-term thesis serves as an overview of the theoretical background behind adaptive
human–robot interaction and its use in educational settings. It contains a short introduction to
skill development theory as well as a description of social robots and their use in education.
The core of this work is an overview of reinforcement learning and how it can be used in
adaptive human–robot interaction. The work further makes a case for and provides examples
of using cloud computing in robotics research. The thesis proposal also presents the scientific
and technological goals of the PhD thesis along with the proposed testing scenario.
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Introduction

Knowledge and skill acquisition are an integral part of human life and human nature. In their
first years, people learn to talk and walk, and they get familiar with the social norms that
prepare them to be a part of society throughout their lives. They are taught to read and write
in formal education, and they learn necessary basic and in many cases advanced knowledge.
Learning, however, also takes place outside and beyond formal education, especially in
a professional setting. In today’s information-driven society and economy, the ability to
acquire new knowledge and develop new skills quickly and efficiently is more important than
ever.

Psychological research exploring the science behind learning successfully determined
the characteristics of an optimal learning environment. Apart from the learner’s motivation
to learn and improve, the material being taught must be designed in a way that takes into
consideration the learner’s previous knowledge and experience, and the learner must come
across immediate informative feedback based on her performance. Although there is a
consensus about what an efficient learning process should look like, implementing it in a real
setting might prove to be problematic, since it requires personalized tutoring and dedicated
attention from the teacher, something that is rarely plausible in formal education.

In past years, technological developments have been used to address this problem and
to optimize the learning process of students of all ages. Artificial intelligence provides
the possibility of personalizing the learning process for a larger number of students, while
research in human–robot interaction explored the viability of using social robots in education,
most of this research focusing on knowledge acquisition. Cloud computing offers an ideal
environment for computationally heavy operations connected to personalization, and it also
promotes higher accessability and speed.

In our work we want to use methods of artificial intelligence, reinforcement learning in
particular, to help to create a personalized and optimized learning experience for learners
developing a new skill, and to train adaptive tutors for cognitive stimulation therapy.



2 Introduction

Main goals and structure of the mid-term PhD thesis

The goals of this mid-term thesis are the following:

• provide an introduction to the theoretical background of human learning, and cognitive
stimulation therapy

• give an overview of intelligent tutoring systems and how they are used in education

• provide an overview of social robots and their application in educational settings

• describe reinforcement learning and some of its methods and algorithms

• list the advantages of cloud computing to robotic research and tutoring systems

• define the scientific and technological goals of the PhD thesis

Based on the goals of the thesis, this mid-term thesis is structured as follows:

• Chapter 1 discusses the theory of skill development and types of practice. The problem
of knowledge and skill retention is described, and spaced repetition is shown to be
an effective solution. The chapter contains an introduction to cognitive stimulation
therapy, and closes with the description and a short overview of intelligent tutoring
systems, software applications used in personalized education.

• Chapter 2 focuses on the use of robots in social settings, especially in education and
cognitive stimulation therapy. It lists issues that are necessary to consider when testing
and evaluating interactive robotic systems, and outlines three possibilities for adaptive
human–robot interaction.

• Chapter 3 is a short introduction to reinforcement learning, an approach of machine
learning that can be used to adapt the learning process to the student’s needs. It touches
on problems and questions that must be considered when applying reinforcement
learning, and it describes a few basic algorithms and methods.

• Chapter 4 comprises a short introduction to cloud computing, and the potential benefits
of its use in robotics research, with special emphasis on personalization.

• Chapter 5 presents the scientific and technological goals of the PhD thesis.

• Chapter 6 describes the scenario in which the proposed outputs of the doctorate thesis
will be tested and evaluated.

• Chapter 7 concludes the work.



Chapter 1

Human learning and interactive tutoring
systems

Learning is inherent to human life and human development be it in a formal or an informal
setting. As such, understanding the human learning process and optimizing it for the highest
learning gain and rate of retention has been subject of research for decades. Educational
applications also became part of artificial intelligence research. In this chapter, we look at
the process of skill development, and different types of practices used in skill development.
We describe how spaced repetition can be beneficial for long-term retention. The chapter
concludes with a list of some intelligent tutoring system architectures.

1.1 Skill development

Besides knowledge acquisition, learning also entails the acquisition and development of
new or existing skills. Most learning processes, such as language learning, consist of both
knowledge acquisition (e.g. vocabulary) and skill development (e.g. sentence structures).
Even though skill development is an essential part of human development, in most cases, it is
done in an ad hoc and naive way [26]: after some initial carefully devised lessons (given by a
teacher/tutor/coach or following a formal and structured course), people reach an acceptable
level after which they practice the same things over and over. While the general belief is that
such practice will lead to improved performances, research has shown that beyond reaching
a level of competence, simple repetition does not help people to get better at a skill. On the
contrary, repetition might lead to performance slightly worse than that of beginners [26][28].
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1.1.1 Stages of competence

The steps of skill development were formally described by Broadwell in 1969 as the four
levels of teaching [17]. The four stages of competence (hierarchy of competence or four
stages of learning) describe basic stages in the learning process and identifying them can
help to create a more efficient learning process. The four stages are [33]:

1. unconscious incompetence – It is associated with the wrong intuition from the learner
who is not aware of the existance and/or relevance of the skill area and does not
recognize her deficit in the area which hinders any development. The learner must
first recognize her incompetence, and the value of the new skill. The time needed for
moving on to the next stage depends on the incentive to learn.

2. conscious incompetence – It is associated with the wrong analysis from the learner
who understands the importance and relevance of the skill and also perceives her
incompetence (usually by attempting to perform the skill). Initial learning of the skill
takes place here. The learner still does not know how to do something, but she sees the
value of the new skill and why she should address her deficit. At this stage, making
mistakes is an integral part of the learning process.

3. conscious competence – It is associated with the right analysis from the learner who
already understands or knows how to do something but performing the skill requires
concentration. This stage comprises the majority of a learner’s time spent on skill
development. The learner usually breaks the skill down into smaller steps, and relies
on heavy conscious involvement in executing the new skill.

4. unconscious competence – It is associated with the right intuition from the learner
who, thanks to practice, is now able to perform the skill easily. Performance is fully
automatic and can be done while executing other tasks. The learner is able to teach
others in the skill, although due to the unconscious performing of the skill, she might
find it difficult to explain the basic steps. Frequent practice with the aim to improve is
necessary to maintain this level and prevent deterioration of the skill.

1.1.2 Purposeful practice

Purposeful practice is more thoughtful and focused than simple repetition of the skill [26].
While simple repetition means performing the skill without any further consideration, pur-
poseful practice has well-defined specific goals that are easy to check at the end of practice.
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Furthermore, purposeful practice is focused and involves feedback. While all practices
have some inherent belated feedback (e.g. the result of performing the skill), purposeful
practice involves feedback already during training and is closely connected to the attention
the learner gives to the task, and it engages the learner’s ability to approach his learning in an
analytical way. Feedback is needed to identify weaknesses and to find out which aspects of
the skill must be improved to achieve one’s goals.

Finally, purposeful practice requires the learner to always perform right beyond the limits
of his comfort zone. This characteristic is expected to prevent the learner from getting
comfortable and stalling his improvement by constantly challenging his physical and/or
cognitive capacity. In this regard purposeful practice is also necessary to maintain one’s
abilities.

1.1.3 Deliberate practice

Although purposeful practice is efficient in developing one’s skills beyond the limits that
can be reached through simple repetitive practice, it is still not enough to maximize one’s
performance levels, something which is highly dependant on the mental representation one
uses to perform a skill [20]. Ericsson et al. in [29] defined another type of practice called
deliberate practice. They observed such practice especially in domains where education is
highly developed and formalized, such as classical musical training [30], and sports [27]. In
these domains, performance and achievements increased over time, and this improvement is
connected to the development of teaching and training methods used in the domain. Generally,
learners engage in personalized training that is devised with consideration to their current
abilities and are intended to push the learner just beyond their current skill level [26].

The difference between purposeful and deliberate practice is twofold [29]. First, de-
liberate practice is only possible in a field with clearly distinguishable elite and beginner
performers; these fields are usually developed and competitive with objective or semiobjec-
tive ways to measure performance. Second, deliberate practice requires a teacher or trainer to
provide learners with personalized activities that improve their performance the most. Thus,
in addition to being purposeful, deliberate practice is also informed, since learners understand
the top performers’ accomplishments and their methods to reach such performances. In
contrast with performance, deliberate practice has almost no external rewards, and it is not
inherently enjoyable [29].

In [26] and [29] Ericsson defines the following traits of deliberate practice:

• Deliberate practice develops skills already mastered by others where a set of efficient
training techniques have been established.



6 Human learning and interactive tutoring systems

• The practice is overseen by a teacher or a coach.

• Deliberate practice requires the student to try things just outside his or her comfort
zone.

• Similarly to purposeful practice, deliberate practice targets a specific goal.

• Deliberate practice requires the learner’s full attention; the learner must be able to
observe his or her own practice to be able to make adjustments.

• Based on feedback acquired from the learner or teacher, deliberate practice is modified.

• Mental representations play a crucial role in the student’s ability to analyze his or her
performance; improvements in performance are only possible through improvements
in mental representations.

• Deliberate practice involves improving particular aspects of a skill, consisting of a
series of step-by-step improvements.

1.2 Retention

After knowledge or skill acquisition ends, retention of the new information or of the ability
to perform a skill becomes desirable. Somewhat counterintuitively, for long-term retention,
some degree of short-term forgetting is beneficial, since it strengthens the ability to be able to
recall information the most. This reality stems from a well-observed phenomenon called the
spacing effect, whereby the amount of learned material is greater when learning takes place
over a longer period of time and multiple study sessions instead of a single instance [25].

Spaced repetition is a learning technique that exploits the spacing effect and also ensures
effective long-term retention. The idea behind spaced repetition is that bits of information
that the learner recalls easily should be revised less frequently and in growing intervals while
the material that causes problems should be revisited again.

Spaced repetition as a learning technique was first described by C. A. Mace in 1932 [77].
He pointed out the importance of distributing study sessions over a longer period of time
and proposed that revision be spaced in gradually increasing intervals. Research in spaced
repetition gained new momentum in the 1970s when psychologists showed its effectiveness
in improving recall [69][85]. A general spaced repetition learning system using flashcards
was proposed in 1973 by Sebastian Leitner [38].

In the Leitner system (see Figure 1.1), flashcards are sorted into categories based on how
hard the learner finds to recall information described on the cards. During each study session,
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Group 3 
 

revised weekly 

Group 2 

revised every other
day 

Group 1 

revised every day 

Group 4 

revised bi-weekly 

correct answer  correct answer   correct answer

incorrect answer

Fig. 1.1 The Leitner system

the student tries to recall the information on a given flashcard and if he is successful, he
moves the flashcard into the next group which he revises at longer intervals. If the recall of a
flashcard is incorrect, the flashcard is moved to the first group of cards, revised on a daily
basis (or, in some variations of the system, into the previous group of cards).

The original Leitner system was further developed and adjusted by Wozniak [135]. The
advent of spaced repetition computer softwares gave rise to personalizable and adjustable
algorithms that can use neural networks to determine the rate of revision.

1.3 Intelligent tutoring systems

The incorporation of computer technology and artificial intelligence in education gave rise to
the new field of computer-assisted instruction from which the research of intelligent tutoring
systems (ITSs) emerged. While some research in computer-assisted instruction envisioned
a more radical change in formal education and its environment [102], intelligent tutoring
systems are created for the current educational systems [98]. The goal of ITSs is to reproduce
the behavior and teaching strategy of a human tutor. Therefore, ITSs must know what they
teach, whom they teach and how to teach. The research of ITSs lies at the intersection of
computer science, artificial intelligence, cognitive psychology, and educational research. The
motivation behind ITSs is that they can provide presonalized one-on-one tutoring which was
shown to be the most effective learning approach for most subjects.

1.3.1 Architecture of intelligent tutoring systems

The general architecture of an ITS (see Figure 1.2) consists of four basic components: the
domain model, the student model, the teaching model, and a user interface or learning
environment [36][98].
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domain
model

student
model

tutoring
model

user interface

user

Fig. 1.2 Architecture of an intelligent tutoring system (recreated from [98])

The domain model contains the facts and rules of the domain being taught. It is the
source of knowledge to be presented to the student, and it also has the information necessary to
evaluate the student’s answers and performance. The domain model must be able to generate
questions and problems, their solutions, explanations, and responses. The component must
also have the ability to identify mistakes the student makes, so it can draw the student’s
attention to them, just like to any gaps in her knowledge. The domain model represents an
expert’s view on the subject, this might lead to problems with interpretation of instructions
by the student or with interpretation of student answers by the component [98].

The student model is the dynamic representation of the student’s knowledge and skills
(for a more detailed description of implementation see sections 1.3.2 and 1.3.3). This
component is necessary to enable the understanding of the student and the personalization of
the learning experience. The model can include any aspects of student behavior that might
have an impact on student performance, although this might not be possible because of the
constricted nature of communication between student and system. [115] identifies six types
of student model functions:

• corrective – to address misconceptions in the student’s knowledge

• elaborative – to correct incomplete student knowledge

• strategic – to change the tutorial strategy in a significant way

• diagnostic – to identify misconceptions in the student’s knowledge

• predictive – to determine the student’s most likely responses to the system’s actions
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• evaluative – to assess the student or the ITS

The teaching model or tutoring model designs and controls the interaction with the
student. It uses information from the domain and student models to infer appropriate
pedagogic actions. Based on the pedagogic strategy, action selection can take multiple forms.
Two of the most common decision making processes are elicit/tell and justify/skip-justify
[22]. A system can elicit a step from a student, meaning that the student must explicitly
express the next step in solving a problem, or it can tell the student the next step without
further explanation. The justify action asks the student to explain why he used a certain step
in the solution as this is expected to deepen the student’s understanding of the domain. On
the other hand, a discussion of a problem solving step might not be necessary or helpful to
the learning process, such decisions are called skip-justify.

The user interface or learning environment is the communication channel between the
system and the student. It bridges the difference between the system’s internal representation
and an interface language understandable to the student, and also preprocesses input from
the student.

[4] presents an alternative architecture that contains a bug catalogue of common mis-
conceptions and errors instead of a student model (see Figure 1.3). The domain model also
serves as the model that the student should ideally reach. The architecture presented in
[101] contains five components: student history, student model, teaching strategy, teaching
generation, teaching administration (communicating with the student). ITSs also incorporate
the idea of gradual self-improvement over time. Their architecture is shown in Figure 1.4; the
adaptive teaching system has the architecture of an ITS, while the self-improving component
applies experimental changes gathered from study sessions to improve the system’s tutoring
abilities.

In the following two sections we look at two commonly used methods of student knowl-
edge modeling: model tracing, and constraint-based modeling.

1.3.2 Model tracing

Model tracing tutoring (MTT) stems from the adaptive control of thought theory, which states
that “acquiring cognitive knowledge involves the formulation of thousands of rules relating
task goals and task states to actions and consequences” [3]. The aim of MTT is to recreate
the thought processes that lead a student to a solution of a problem. The thought process is
represented through a series of rule executions whose result is the same as the student input.
An MTT system is composed of expert rules, buggy rules, a model tracer and a user interface
(see Figure 1.3). Expert rules model the steps used to solve the problem at hand and can
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model tracer

user interface

expert rules buggy rules

student

Fig. 1.3 Anderson’s ITS architecture

self-improving program

adaptive teaching system

student

Fig. 1.4 Architecture of an adaptive tutoring system (recreated from [98])
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be sorted into two categories: planning rules that describe the process of decomposing a
problem into subproblems (see example I below), and operator rules that address the solution
of atomic subproblems (see example II below). Buggy rules reflect common misperceptions
and misconceptions (see example III below).

I IF goal is to prove that number is divisible by six
THEN prove that number is divisible by three

prove that number is divisible by two

II IF goal is to prove that number is divisible by two
and division by two has zero remainder

THEN infer that number is divisible by two

III IF number ends in 2, 4, 6, 8, or 0
THEN infer that number is divisible by four

The model tracer’s goal is to retrace the student’s reasoning through the application of
these rules. If the trace contains buggy rules, the system concludes that the student lacks
the necessary understanding of the given knowledge and it provides remediations associated
with the found buggy rules. If the student input is incorrect, but the model tracer cannot
find the buggy rule applied by the student, the system provides a general feedback pointing
out the existence of the mistake. When several equally acceptable strategies can lead to the
correct solution, the tutoring system must have rules for all of them, and must be able to map
the student’s reasoning to a particular strategy [114].

Model tracing is the most widely used approach to develop ITSs [87]. Their successful
application is well-documented and generally their use resulted in as much as a one standard
deviation improvement in student performance [65]. In [66], the introduction of the PUMP
algebra tutor improved student performance by one standard deviation, similar improvement
was observed in the domain of geometry and programming [5]. The Andes physics tutor
improved student letter grade by a third on average [37].

1.3.3 Constraint-based modeling

Constraint-based modeling (CBM) of students was proposed by Ohlsson in [99], and it relies
on detecting the student’s errors to build a student model and to provide remediation. A CBM
system is based on contstraints, a structure that specifies conditions that must be satisfied
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for all correct solutions. Therefore, if one of the student’s answers violates this condition,
the system can detect that the student has made a mistake. In contrast with model tracing,
CBM systems do not try to emulate the student’s thinking process and do not contain a solver
component that is capable of solving the problem presented to the student. Because of this,
CBM systems do not require a sophisticated set of rules that can trace the student’s thinking
process as is the case with model tracing systems.

Formally, a constraint is an ordered pair <Cr,Cs > (see example IV below), where Cr is
the relevance condition that specifies when a constraint is relevant to the student’s answer,
and Cs is the satisfaction condition that defines a condition that should be true for all student
answers. Not all constraints are relevant to all student answers, their relevance is ascertained
based on the student input and additional variables integral to the presented problem. If the
student’s answer meets Cr but does not satisfy Cs, the system can detect that the student has
arrived at an incorrect solution. Otherwise, the system lets the student proceed in solving the
problem.

IV Cr IF student says that number is divisible by three
Cs THEN the sum of the number’s digits must be divisible by three

CBM tutors were implemented for introducing students to SQL database commands [86],
punctuation [81], and database modeling [121].



Chapter 2

Social robotics

Social robotics, a new field of robotics, addresses the need for socially interactive robots.
The main difference between social and service robots is in their approach to human–robot
interaction (HRI): while service robots don’t necessarily interact with people (most often they
only observe them as obstacles), social robots must interact with humans to reach their goal.
Another difference is that social robots must have characteristics that make the interaction
natural for humans. In this chapter we discuss questions of social robot design, social aspects
of human–robot interaction, the Wizard of Oz methodology, and we present some results of
our research in adapting human–robot interaction along with use cases of social robots in
education and cognitive stimulation therapy from other research studies.

2.1 Design of social robots

In [32] and [34], the authors identified characteristics and capabilities such as emotion
expression and perception, high-level dialogue communication, learning and recognizing
models of other agents, establishing and maintaining social relationships, use of natural cues
(e.g. gaze, gestures), and distinctive personality and character that are specific to social robots.
It is important to note that not all social robots must have all of these qualities, although the
more they have, the more natural the human–robot interaction will be.

In accordance with the above-named characteristics, [34] names key research problems
in social robotics:

• design – During HRI, it is desirable that the human be put at ease and relax and so
social robots often have human-like faces, support speech recognition and further
functionalities that make the HRI natural to humans. Robots can be built in two ways
[34]: biologically inspired (robots try to internally simulate social intelligence through
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cognitive, behavioral, motivational, motor and perceptual systems) and functionally
designed (the robot acts as if it was socially intelligent, but there are no internal
mechanisms similar to those of biologically inspired robots).

• embodiment – A robot is embodied if there is a possibility of “mutual perturbation
between system and environment” [105]. Social robots can often fit into four categories
based on their level of embodiment: anthropomorphic (imitates human behavior, it
must be able to facilitate social interaction), zoomorphic (imitates animals), carica-
tured (some features of the robot are highlighted to intentionally create biases), and
functional (the robot’s functionality is reflected on its appearance).

• artificial emotions – They help to facilitate HRI and provide feedback to the human
about the robot’s internal state. They can be expressed through speech, facial expres-
sions, body language, and further non-verbal communication channels.

• dialogue – For successful dialogue the human and robot must share a set of symbols
describing common concepts. There are three main levels of human–robot communi-
cation: low-level, non-verbal, and natural language.

• personality – It is believed that a robot with a personality can encourage interaction
and establishment of relationship between human and robot. From the point of view of
robot’s having personality, we can categorize them into the following groups: tool-like
(robots performing services), pet/creature (robots acting as domesticated animals),
cartoon (robots with caricatured personalities), artificial being (robots with artificial –
non-human – characteristics), and human-like (robots with human personality traits).

• human–oriented perception – In HRI it is not sufficient for robots to perceive only their
environment, they must be able to correctly perceive the human they communicate
with. Therefore, capabilities tied to human–oriented perception, such as people track-
ing, speech recognition, gesture recognition, facial expresssion assessment, and gaze
tracking, are essential.

• user modeling – For natural HRI social robots must also be able to detect, recognize
and predict human action. This can be done through user modeling, which enables the
robot to expect and react to human behavior, understand human behavior and dialogue,
and adapt the robot’s behavior to the user. User models can be static or dynamic
and can be built from explicitly (through questioning) or implicitly (inferred through
observation) acquired data.
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• socially situated learning – Social robots are not limited to a pre-defined set of possible
actions but can also learn new skills and behaviors during interacting with a human.
These skills are not necessarily social skills but are all useful in accomplishing the
aims of HRI.

• intentionality – It is closely bound to understanding and predicting human behavior
and it has three levels: physical stance (body movement and physical characteristics),
design stance (design and functionality of the robot), and intentional stance (the
robot’s beliefs and desires).

2.2 Social aspects of human–robot interaction

One of the goals of social robotics is to facilitate human–robot interaction that is as natural for
the human interacting partner as possible. Since the observing, understanding, and conveying
of social input is an inherent part of human–human interaction, social robotic systems must
also support the processing of social input to some degree. Social input comprises verbal
utterances and non-verbal cues, such as voice pitch, emphasis, tone, facial emotion, mood,
gestures, gaze direction, etc. Dealing with social input has a high computational cost which
may present a problem for robotic systems, the use of cloud computing is therefore often
beneficial (see section 4.2.4).

The processing of dialogue is the subject of research in natural language processing, but
it also touches on the problem of speech-to-text transcription. In social robotics, however,
transcribing and processing a human’s speech is insufficient. The robot must also understand
what the human says and transform this information into a representation that the robot
can then use to construct its reaction. In creating the reaction, the robot can also rely on
natural language processing to accomplish personalized and targeted language use from
the robot. Generating speech can be done either by using a robot’s implicit text-to-speech
capabilities, which is provided for a number of social robot platforms, or by applying
third-party implementations.

Observing and detecting non-verbal communication poses a bigger problem for social
robotics, and a distinction must be made between the way humans process non-verbal cues
and how robots try to imitate this recognition. In the case of robots (or any computer), it is
more appropriate to talk about assessment rather than recognition, since robots do not view
verbal and non-verbal communication channels as part of the same coherent communication,
but as individual channels that must be processed independently. Because of this, the results
of processing non-verbal cues can be seen only as approximation rather than true recognition.
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Non-verbal information from speech is usually detected from the transcribed text (e.g.
mood based on the words being used by the human), but it can also be done by analyzing the
human speaker’s pitch, tone, and emphasis. In observing gaze direction, the most relevant
piece of information is the amount of time the human interacting partner spends looking
directly at the robot. For gestures and other aspects of body language, the acceptance of
the robot by the human can be approximated. By far the most often used non-verbal cue in
human–robot interaction is facial emotion, where the human’s emotion is to be approximated
from his or her face. This is done first through the detection of landmarks or marker points
on the human’s face (e.g. corners and middle of eyebrows), combining these points into
expressions (e.g. furrowed eyebrow), and then mapping these expressions into emotion (e.g.
anger).

2.3 Wizard of Oz

Because of the relative difficulty of processing social input, as well as the complexity
of reasoning required to make an appropriate robot reaction, the Wizard of Oz (WoZ)
methodology is often used in the context of human–robot interaction research. First described
in [62], the Wizard of Oz refers to “a person remotely operating a robot, controlling any
number of things, such as its movement, navigation, speech, gestures, etc.” [107], see Figure
2.1. To the human participating in HRI, the robot seems to work and act autonomously. WoZ
is necessary because of the limited capacities of robots in interacting in a socially appropriate
way, and it is primarily used to test hypotheses or to simulate capabilities and functionalities
not yet implemented.

Some researchers raised ethical concerns of using WoZ and social deception of the
subjects of experiments [35][108], while others questioned its methodological insufficiencies
[133] pointing out that a WoZ controlled robot is just a proxy of the teleoperator and the
interaction is therefore more a human–human interaction via a robot than a real human–robot
interaction. However, it is important to note that in a WoZ setting, it is possible for the Wizard
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Fig. 2.2 Dimensions of adaptive human–robot interaction

to observe the interaction only through the sensors of the robot, resulting in a more accurate
simulation of the robot’s decision making, since the Wizard is only shown information that
would also be available to the robot.

2.4 Adaptive human–robot interaction

As described in 2.2, implementing an appropriate social behavior for social robots is a
computationally heavy task that can be solved by having the robot controlled by a human
teleoperator, or Wizard. The WoZ methodology on the other hand has an insufficiency
connected to its nature and its applicability for long-term use. Teleoperating the robot
represents a high cognitive load on the Wizard which is a problem especially in a setting
where the accomplishment of the goal of the interaction requires the full cognitive facility
of the Wizard (e.g. cognitive stimulation therapy where the therapist should focus on the
content of the therapy session and not its execution). Furthermore, teleoperation can quickly
become monotonous that will have a negative impact on the quality of the interaction. To
solve this problem, it is desirable to make social robotic systems adaptive, which means that
social robots will adapt their behavior to the human interacting partner based on observations
they make during the interaction. In this section, we describe three dimensions of adaptive
human–robot interaction (as shown in Figure 2.2), namely learning from the teleoperation,
learning social behavior, and learning action selection. We also present our research in using
these adaptations.

2.4.1 Learning from teleoperation

Learning from teleoperation addresses the problems with the Wizard of Oz methodolgy and
aims to move from full teleoperation to a lower level of teleoperation where the Wizard’s
role becomes that of a supervisor and the robot acts autonomously almost every time it has
to select an action. This reduces the load on the Wizard regarding teleoperation, meaning
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that the Wizard can focus on other aspects of the interaction that cannot be tackled by the
robotic system.

The notion learning from teleoperation was first mentioned in [64] and it considers the
Wizard a teacher whose behavior is the desirable (or optimal) behavior in the context of
the given interaction. The robotic system’s aim, then, should be to learn this behavior, so
as to imitate the Wizard’s action selection process, emulating the Wizard’s reasoning, and
reaching a higher level of autonomy. We must emphasize that in a teleoperation setting it
is often still necessary for the Wizard to be present to supervise the interaction and to be
able to interrupt and override the robotic system’s decision if necessary. This is especially
important in interactions that can have a lasting negative effect on the human participant, or
with physically or mentally vulnerable human participants (e.g. therapeutic settings).

A robot system that is learning from teleoperation was implemented and tested in a
cognitive stimulation therapy setting [79]. In our experiments, the social robot acted as
a cognitive stimulation therapy coach in an elderly care facility, and used reinforcement
learning to learn proper behavior from the Wizard in the context of cognitive games. The
games consisted of the robot choosing a letter and asking the human participant to name a
fruit or animal whose name started with the given letter, respectively (e.g. apple/antelope
for A). If the answer was correct, the robot cheered, otherwise it gave a hint for a possible
answer. Each game lasted until the subject gave a correct answer for all the letters. At the
beginning of games the robot introduced itself and explained the rules of the game, and at
the end it wrapped up the game and said goodbye.

The robot could choose from six types of actions:

1. easy question – naming a letter for which there are a number of common animals or
fruits whose names start with the letter

2. medium difficulty question – naming a letter for which it is harder to find an animal or
fruit beginning with the letter, but there are still multiple options

3. hard question – naming a letter for which it is hard to find an animal or fruit beginning
with the letter, often there was just one possible answer

4. give a hint – give the participating human a short description of a possible correct
answer

5. applaud – to be executed after a correct answer; six different expressions were defined

6. sorrow – to be executed after each incorrect answer; six different expressions were
defined
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From the point of view of learning from teleoperation, we measured and analyzed
the proportion of autonomously selected correct actions from the robot. Since the game
constituted a structured interaction, we expected a high rate of learning, which could be
observed by comparing the percentage of autonomously selected actions approved by the
teleoperator between two sessions witch each participating human. On average, the system
selected actions autonomously in 73.75% of the time during the first sessions, and 84.36%
during the second sessions, which represents a 10.61% average increase. The highest increase
for an individual participant was 26.64%, the lowest was 5.71%. For one participant, we
didn’t observe an increase in the proportion of autonomously selected actions.

2.4.2 Learning social behavior

By learning social behavior we refer to the process of adapting a robotic system’s behavior
by observing the human interacting partner’s emotional state without the need for a human
teleoperator to teach the system the proper social behavior. The aims of learning social
behavior is to adjust the robot’s gestures, expressions, etc. to better please the human
participating partner; it doesn’t consider the actual content of the interaction. Learning social
behavior was the subject of a research awaiting publication in cooperation with the Advanced
Telecommunications Research Institute International in Japan.

The impemented robotic system considered two dimensions of the interacting human
partner’s state: emotion level and motivation level, both with three possible values: positive,
neutral, and negative. The emotion level was determined using facial emotion assessment,
while motivation was derived from the length of the human’s speech. Three actions were
available to the robot: short response (e.g. nodding, or a simple affirmation of listening),
long response (a question that urges the human to elaborate on a topic), and topic change.
The goal of the learning was to keep interaction time longer than 30 minutes, and, if possible,
keep the human in a state of positive emotion and positive motivation.

Learning took place considering two aspects. First, since the robot was initially operated
by a human, learning from teleoperation took place, and second, the learning algorithm also
considered the state of the human interacting partner. Although when comparing the social
behavior of a robot being teleoperated, and that of a robot acting autonomously displaying the
learned social behavior, we did not observe a significant increase in the accuracy of the trained
model (meaning that it should display the same behavior as a robot being teleoperated),
the action selection process was not random, and the resulting interactions fulfilled all
expectations. Interaction time increased, as well as the proportion of time when the human
participant was talking because of higher motivation, and the human participants accepted



20 Social robotics

the social robot better than they accepted the teleoperated robot, as shown by an increase in
the amount of time when the human participant was looking directly at the robot.

2.4.3 Learning action selection

Although the robotic system adapts its action selection process to reach a more desirable
behavior in all adaptive human–robot interaction, in this subsection we specifically refer to
the adaptation of the action selection with regards to the content of the interaction without
the need for a human teleoperator to teach the system the proper behavior. In the context of
education or cognitive stimulation therapy, for example, this would mean selecting questions
and problems that keep the human participant just beyond his or her comfort zone of skills
and knowledge.

We created a robotic system in which the robot plays a simple Can you show me the
picture of ...? game with visitors of a museum where the robot names a category and the
visitors have to find and show the robot an image corresponding to the named category. The
images are laid out in front of the robot (see Figure 2.3). For the initial testing and evaluation
we selected eight categories of robots as the subject of the game with three levels of expected
difficulty: easy (robotic dog, drone); medium (domestic robot, industrial robot, mobile robot);
hard (android, humanoid, nanobot).

We tested the hypothesis that the expected difficulty of the question along with the
player’s age could contribute to an adaptation of the question selection process with the
aim of maximizing the number of ideal games, which are defined as ones where the player
answers two questions correctly and one incorrectly (to ensure that the visitors acquire new
knowledge). The system has been deployed for four months for an initial phase of data
collection, for this purpose, questions were selected randomly without the use of a learning
module.
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Table 2.1 Player answers by robotic categories

category correct incorrect no answer total
mobile robot 52 54 28 134
industrial robot 94 18 21 133
robotic dog 106 9 26 141
humanoid 68 39 18 125
android 52 34 30 116
nanobot 71 34 16 121
domestic robot 94 27 21 142
drone 135 5 11 151

Fig. 2.3 Robotic tutor in a museum

The player’s age was approximated using the Microsoft Face API facial emotion assess-
ment service. From the 403 detected players 162 were male and 241 were female, their
ages ranged between 2 and 66. However, after analysis of data we found that the service
overestimates the players’ ages, since the museum is mostly visited by school groups and the
percentage of players under the age of 18 was only 13.9%. Therefore we must conclude that
in this context, approximation of the player’s age cannot be effectively used for our purposes.

Our second hypothesis, that question difficulty can be adjusted, however, was supported
by the gathered data. Table 2.1 shows the number of correct, and incorrect answers for each
robot category. Although the rate of correct answers does not necessarily correspond to our
expectations, it is evident that players have a harder time giving the correct answer for some
questions.
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A learning system was successfully trained using the gathered data, which consitutes
off-line learning. The learning system is currently being integrated with the robotic system
for supporting learning during interaction. The adaptive robotic system will be subject to
further testing and evaluation in a real-life setting, and our results await publication.

2.5 Social robots in education

The application potential of social robots in education was apparent very early on [11][70].
In addition to the general advantages of human–robot interaction, social robots present a
number of further benefits to the human learner. Since robots can observe and map the human
learner’s skill level just like intelligent tutoring systems, they can offer a personalized learning
experience while also having the additional advantage ensured by embodiment [73]. Human
learners tend to react more positively toward a robot than toward an intangible computer
software, even though both rely on the same algorithms [43][45]. Furthermore, in HRI, the
novelty effect of robots has been observed many times and was shown to increase the level of
motivation in humans. Robots can also offer valuable characteristics for a long–term learning
experience, since they have no problem maintaining a consistent level of attention unlike
human tutors.

In [95], the authors describe five dimensions along which research in educational robotics
can be categorized:

• learning activity domain – Four broad domains are listed: robotics/computer education,
science education, language learning, and cognitive development.

• learning location – Intra-curricular (formal education part of the syllabus) or extra-
curricural (after school hours at school, at home or in public places). Extra-curricular
activities are usually less strict and defined, and easier to set up, although they are
usually restricted to one or a couple of sessions and their long-term effects are unclear.

• robot role – The robot can take on a number of roles in the learning process depending
on the expectations defined by the learning domain, instructor, student, and the learning
activity. In general [117] there are three categories of robots based on their role: tool
(robots have a passive role and are only used as teaching aids), peer (role of co-learner),
and tutor (active and autonomous role). Role choice is highly dependent on the learning
task; whereas for some basic learning tasks, cooperative robots are preferred [100], for
language learning tutors are clearly at advantage [111].
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• robot type – Based on the level of embodiment, a progressive scale can be devised:
mechanical kits with a single function, programmable electronic robotic kits (e.g.
LEGO Mindstorms, Arduino), and fully embodied robots (e.g. humanoids, pet animals,
toy characters). In this dimension, the age and the requirements of the students should
be taken into consideration, along with the aims of the educational use.

• pedagogical theory – Three pedagogical theories are prevalent in research: construc-
tivism [103], active learning [46], and learning by design [40]. Social constructivism
[130] applies to most peer or tutor-based scenarios in robotics education.

Educational research showed that one-on-one tutoring is more effective than standard
lectures and results in bigger learning gains and higher rates of information retention. Because
of this fact, research in assistive social robots in education also focused on a setting with
robotic tutors. Traditional methods in research either used predefined behaviors from which
the robot could select, or adapt the difficulty of a class to meet the human learner’s knowledge
[116]. A more general approach promising more efficient robotic behavior is to learn from a
human teacher teleoperating the robot and demonstrating appropriate behavior, or to learn
directly from the interaction with the human learner.

Another dimension of social robot research in education focuses on improving the
learning experience through the robot tutor’s social behavior. Such research is based on
studies done on the impact of human social behavior on learning. In general, social behavior
is thought to increase the learner’s interest which is expected to lead to greater learning gains
[6][80], and personalized language can also lead to improved knowledge transfer [15][49].

These positive effects of social behavior were also observed in a HRI setting [72]. [124]
showed that robot gestures can be used to attract student attention and improve recall.
Maintaining eye contact has also been discussed as a way to engage students [54]. In [111]
the authors compared neutral and socially supportive robots with the use of the latter leading
to improved learning. According to [117] younger children were satisfied with robots being
their peers during learning but older children saw robots more as teaching aids or tools.

On the other hand, research conducted in [63] showed that social robot tutors (see Figure
2.4) can lead to lower learning gains than asocial robot tutors, although the use of either
robot resulted in significantly improved learning compared to a setting without a robot.

In [71] the authors used a social robot not in the role of the tutor but in the role of the
learner. This approach is based on the learning by teaching paradigm, which engages the
student in the role of a teacher and has been shown to produce motivational, meta-cognitive,
and educational benefits [109]. Children who had to undergo remediations for handwriting
participated in the research. Their task was to teach a “bad writer” robot to write (as shown in
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Fig. 2.4 Using a robotic tutor in an educational setting [63]

Figure 2.5). The reversed roles had positive psychological effects on the children (increased
self-esteem and motivation) in addition to pedagogical effects. The robot’s behavior was still
adapted to the child’s needs and was used to control the learning curve. The study showed
that the learning by teaching paradigm can be successfully transposed to social robotics
and that blending machine learning techniques with human–robot interaction allows for
believable agents, leading to social commitment that induces cognitive engagement on the
child’s side.

A large portion of research in educational robots focuses on using robots in language
teaching [10]. Robots were used to teach English in Japan [58], Korea [44], and Taiwan
where researchers pointed out the fact that children are less hesitant to talk to a robot in a
foreign language [18]. Research in [118] showed that social interaction is imperative in a
language learning setting by conducting a survey of two robots – an emotionless humanoid
and a robotic dog – over a period of four-week long home use, with both children and parents
preferring the robotic dog. This conclusion reflected results similar to those obtained in [92].

In [2] a NAO robot was used to support teaching English as a foreign language in a
classroom setting. The students’ knowledge was assessed before and after five lessons;
children learning with a robot showed superior retention rate and students learned more
vocabulary. In one-on-one tutoring settings, however, research shows mixed results [134][50].
It is also important to note that language tutoring usually requires accurate speech recognition,
which poses a problem for the successful use of robots [94].



2.6 Social robots in elderly care 25

Fig. 2.5 Using a robotic peer in an educational setting [71]

2.6 Social robots in elderly care

Cognitive stimulation therapy (CST) is an intervention program and treatment effective
in slowing down and mitigating the effects of mild to moderate dementia or Alzheimer’s
disease. Its goal is to stimulate and engage the cognitive capabilities of a human suffering
from dementia in order to help them to continue to learn and to stay socially engaged. The
therapy consists of a series of themed activities, such as physical games, word association,
orientation, number games, and word games; and it is usually carried out in groups, but
individual treatment is also possible, and it also makes a more personal and targeted therapy
possible.

CST was developed in the late 1990s and early 2000s, as an evidence-based treatment
[120]. Research showed that CST led to significant benefits in people’s cognitive functioning.
Therapy involves at least 14 sessions, typically twice weekly, and has been shown to have
comparable effects to those of anti-dementia drugs. It shows the biggest positive effect
in promoting language function (naming, word-finding, and comprehension) [119]. CST
also improved quality of life significantly, as rated by partipicants of various research. No
side-effects of CST were reported. An optimalized learning environment is essential to the
success of CST, and so applications of artificial intelligence and robotics research were tested
in elderly care settings.
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The social robot PARO was used in anti-dementia treatment in [19]. The robot interacted
with people with different levels of cognitive impairment and with their therapists. The
therapy increased the subjects’ activities in social interaction, and their activity levels.

In [31] a social robot was used to engage elderly users in physical exercise. The aim of
the therapy was to achive helth benefits and improve quality of life, and the system used
personalized interaction to achieve its aim. Two systems were compared, one with social
behavior and one without, with the former one meeting a higher level of acceptance among
participants.

A robotic system was used in the context of cognitive stimulation therapy in [125]. The
robot played games to increase the participants’ cognitive attention and slow down their
cognitive decline. By recording the subjects’ performance the system was able to adapt the
level of difficulty for games, resulting in games tailored to the needs and capacity of each
participant. A summary of our research in robotic tutors in cognitive stimulation therapy can
be found in section 2.4.1 or in [79].



Chapter 3

Reinforcement learning

In section 2.4 we named three aspects of human–robot interaction adaptation: learning from
teleoperation, learning social behavior, and learning action selection. These dimensions
have some specific characteristics that define the problem. First, it is often desirable for the
learning to take place on-line, during the interaction. Second, the robot can be considered
to be an agent of the interaction that must observe the reaction of its interacting partner,
the human. In this chapter, we describe reinforcement learning and its methods, a machine
learning approach most suited to the problem of adaptive HRI because its representation of
the problem is similar to the nature of HRI.

Reinforcement learning is one of the three main approaches of machine learning along
with supervised and unsupervised learning. Both supervised and unsupervised learning
require a dataset for training, but while in supervised learning the expected output for all
inputs must be available, unsupervised learning is able to identify some subsets of data with
the same characteristics without knowing the output. Reinforcement learning is typologically
closer to supervised learning in that it considers both the input and output of a problem,
however, unlike supervised learning, it does not require to know the outputs in advance, it
discovers them instead during training. The classification of machine learning methods and
their connection is depicted in Figure 3.1.

Reinforcement learning (RL) represents the problem as situations and then maps these
situations to actions in a way that maximizes numerical rewards [123]. In a RL setting, the
learning model (actor or agent) is interacting with an environment. This environment has
a state and reacts to the actions undertaken by the actor. From the changes observed in the
environment’s state, the actor can deduct the reward of executing a given action: the higher
the reward, the more appropriate the action. In many use cases, actions affect not only the
immediate reward but all subsequent rewards. The sum of subsequent rewards is the value
which represents the amount of expected reward in a given state. The actor has no explicitly
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Fig. 3.1 Overview of a machine learning approaches [74]

programmed rules for action selection, it learns the correct behavior by trial and error which
along with delayed reward distinguishes reinforcement learning from other machine learning
methods [123].

The problem of reinforcement learning can be formalized as the optimal control of an
incompletely-known Markov decision process. In such a setup, the actor is able to observe
its environment and through executing actions can affect the state of the environment [123].
A RL model consists of three basic elements:

• a state space S = {S1,S2, ...,Sn} that contains all possible states of the environment
as described by a finite set of features

• an action space A = {A1,A2, ...,An} that contains all actions available to the actor

• a reward function R = r(st ,st+1,at) that assigns rewards to state transitions where st

is the state before executing action at and st+1 is the subsequent state

The goal of RL is to find an optimal policy π∗ which maps a state to the action yielding
the highest possible reward. To reach this goal, a number of issues need to be taken into
consideration.

One of the most common problems in RL is the tradeoff between exploration and
exploitation. Exploration is an attempt to discover more about the world by choosing actions
randomly hoping that it will lead to the discovery of a more rewarding behavior. Exploitation
is using already mapped behavior to get the best results the actor has discovered. A lack of
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exploration will lead to a suboptimal policy while too much exploration hinders learning as
the learning model does not exploit its knowledge of the environment. Action selection that
always exploits current knowledge is called greedy since it always selects the action with
the highest expected reward. A more sensible approach is to use an almost greedy action
selection function which acts greedily most of the time and selects the action randomly with
a low probability ε (ε-greediness).

Two further parameters that need to be considered for RL are learning rate (α) and
discount factor (γ). Learning rate or step size defines the extent to which newly acquired
experience affects the overall behavior of the RL model. A learning rate α = 1 will cause
the model to consider only recent information and not remember previous action selections
(ideal for deterministic environments), while with α = 0 the model is not learning (full
exploitation). For stochastic environments, the learning rate must be sufficiently big at the
beginning of learning and must converge to zero with time so that the model exploits its past
experience.

Discount factor is used to create an appropriate balance between immediate rewards and
long-term values. A discount factor γ = 0 will make the actor consider only the immediate
reward, while γ = 1 makes the actor strive for long-term high value. It is important to note
that there is a theoretic possibility that with a discount factor of 1 or higher, the action values
might diverge and that a small discount factor at the beginning of learning will accelerate
learning. Therefore, it is desirable for the discount factor to be low at the start of the learning
and gradually increase toward a value lower than 1.

3.1 Model-free and model-based reinforcement learning

There are two major categories of RL that differ in their approach to considering the environ-
ment and state transitions: model-free algorithms and model-based algorithms [56].

Model-free algorithms learn a value function and policy from interaction with the agent.
This means that at the end of learning, the agent knows how to act but does not have an
explicit representation of the environment (as if playing chess without knowing the rules, and
only knowing which moves will result in a positive outcome).

Model-based algorithms first construct a model approximating the environment’s behav-
ior by replicating state transitions and outcomes, and then they search this model to find
appropriate actions. This means that model-based algorithms do learn state transitions and
know what to expect from the environment if a certain action is executed, while model-free
algorithms only make these decisions based on the expected rewards for a given action in a
given state.
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Apart from their different approaches to learning, these two types of algorithms are suited
for different learning scenarios. Model-free methods are appropriate for use cases where
collecting data is not a problem and their algorithms include Monte Carlo methods (relying
on random sampling), and temporal difference methods (bootstrapping from estimates of the
value function). Model-based methods are better suited for domains where collecting data
is expensive or otherwise problematic, and their algorithms include dynamic programming
(breaking down a problem to sub-problems).

3.2 Feature selection

Effective state representation is essential for successful learning through reinforcement.
Ideally, the learning algorithm would consider only features that describe the state of the
environment in sufficient detail but is also complex enough not to simplify the environment
too much. The importance of careful feature selection becomes apparent when considering
the number of possible states an environment has based on the number of features we select.
The selection of a new feature multiplies the number of possible states by the number
of values this new feature can take. Therefore, the number of selected features must be
considered carefully as a number too small might lead to an overgeneralized state of the
environment, while selecting too many features will hinder learning by being too specific in
modeling the environment.

Feature selection is problematic because human intuition alone might not always result
in the selection of the most appropriate features for RL. At the beginning of the process, the
best is to consider all features that might affect the learning process and then use algorithmic
feature selection methods to identify the ones that contribute to the action selection process
the most.

In [22], the authors listed twelve feature selection methods in the use case of pedagogical
systems. In their methodology, they first considered all possible features and then determined
the maximum number of features (m̂) in a way that ensured that all states are represented in
the training data but large enough not to lose information necessary to making good system
decisions.

There is a large variety of feature selection methods from which we will describe four
categories here:

• random feature selection methods – used mostly as benchmarks for other feature
selection methods. They select features in a random manner from a set of possible
features ω .
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• RL-based feature selection methods – based on RL metrics such as Expected Cumula-
tive Reward (ECR), lower-bound (worst-case scenario for acquired long-term value),
upper-bound (best-case scenario for acquired long-term value) or hedge (Hedge =

ECR
U pperBound−LowerBound ). In [21], it was shown that for m̂≤ 3, ECR is the best metric,
while for 4≤ m̂≤ 6, upper-bound performed the best for pedagogical systems. This
is due to the fact that in an educational scenario, the student will most likely not lose
information, hence there is no real chance of a negative reward.

• PCA-based feature selection method – in a set of features where features are correlated,
it might come to redundant feature selection. To tackle this problem, it is possible to
use Principal Component Analysis [55] for which the features must first be normalized.
From the normalized features, the principal components and their eigenvalues are
generated. From such a list, we can select only the components with an eigenvalue of
1 to be considered for feature selection (feature set ωPCA).

• hybrid methods – a combination of the above-listed methods can also be used for
feature selection. A possible combination could be to first apply PCA to the set of
features ω to get rid of redundant features and then apply RL-based or random feature
selection to ωPCA.

3.3 Reinforcement learning methods

In the following subsections we describe selected methods of reinforcement learning. These
methods can be categorized into value-based and policy-based methods (see Figure 3.2).
Value-based methods learn the value function V π during training; they derive their policies
from this function. Policy-based methods on the other hand learn the optimal policy π∗

directly, or they approximate it if the optimal policy isn’t available. We first describe Q-
learning, a value-based method, then we turn to deep reinforcement learning, and end the
chapter with the consideration of hybrid reinforcement learning methods.

3.3.1 Q-learning

Q-learning is a model-free RL technique that finds an optimal policy π∗ for any finite Markov
decision process as proved in [84]. Q-learning uses the Q-function to reach an optimal policy.
The Q-function calculates a reward for any given state-action combination (Q : S×A→ R)
according to the value iteration update shown in Equation 3.1.
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Fig. 3.2 Value- and policy-based reinforcement learning methods [74]

Q(st ,at)← (1−α) ·Q(st ,at)+α · (rt + γ ·max
a

Q(st+1,a)) (3.1)

where

• Q(st ,at) is the Q-value for the state-action pair at timestep t,

• α is the learning factor,

• rt is the immediate reward acquired after executing action at in state st ,

• γ is the discount factor,

• max
a

Q(st+1,a) is the maximal expected Q-value for state st+1.

Training of the model consists of multiple episodes with one episode lasting until state
st+1 is a terminal state. The Q-values for terminal states are never updated but set for the
reward observable in the given state. The learned Q-values are represented in a Q-table
that consists of two sides: the left side describes the state and the right side consists of the
expected Q-values for executing an action in the given state, the update of these Q-values
constitutes the learning process (compare Table 3.1 (a) and (b)).

A number of further RL algorithms were developed based on Q-learning from which we
mention two here. Double Q-learning targets an inherent weakness of Q-learning, namely
that in some stochastic environments the algorithm overestimates action values because of a
positive bias [47]. This is caused by the Q-learning algorithm using the maximum action
value as an approximation for the maximum expected action value. Double Q-learning
introduces a double estimator that might underestimate the action value but is still convergent
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Table 3.1 Q-table before (a) and after (b) training. The model represents an actor moving in a
simple 2 × 2 maze with the end state at position [1, 1]. Action names: N – move north, E –
move east, S – move south, W – move west. Reward function: 10 if actor reaches position [1,
1], -1 otherwise.

(a)

state action
x y N E S W
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

(b)

state action
x y N E S W
0 0 6.19 7.99 7.99 6.19
0 1 6.19 10.0 7.99 7.99
1 0 7.99 7.99 10.0 6.19
1 1 6.19 10.0 10.0 7.99

to the optimal policy. In this setup, two different policies are used to estimate the action value
and to select the next action.

While Q-learning and double Q-learning are off-policy algorithms, meaning that they
update Q-values considering action selection with the optimal policy, another alternative,
SARSA, is on-policy. SARSA was proposed in [110] and its name reflects the differences in
the Q update function compared to traditional Q-learning. The SARSA update function does
not consider the optimal action value (the highest value) but the one that the algorithm would
actually choose in the next state, as shown in Equation 3.2.

Q(st ,at)← Q(st ,at)+α · (rt + γ ·Q(st+1,at+1)−Q(st ,at)) (3.2)

All of these algorithms suffer from another inherent limitation, that is, learning is effective
only when the features describing the various states take discrete values. Otherwise, the state
space would be infinitely large and the policy deduced from the Q-table would not converge
to an optimal one.

3.3.2 Deep Q-learning

Neural networks were combined with reinforcement learning already in the 1990s when
one of the most well-known successful application was TD-gammon, a blackgammon-
playing program that reached super-human level of play thanks to reinforcement learning and
self-play [126]. TD-gammon used a model-free RL algorithm based on Q-learning, and a
multi-layer perceptron with one hidden layer to approximate the value function V (s) instead
of the action-value function Q(s,a) as compared to Q learning. However, further attempts
to repeat TD-gammon’s success with other games such as chess, Go and checkers were not
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fruitful. This resulted in a more systematic analysis of combining model-free RL algorithms
with non-linear function approximators. In [127], it was shown that such a Q-network could
diverge because of the sequential nature of observations where later observations have a
larger effect on the policy. This issue was partially addressed by gradient temporal-difference
methods which are proven to converge [14][78].

The most recent breakthrough in deep reinforcement learning was presented in [89] where
the authors’ aim was to connect a RL algorithm to a deep neural network operating directly on
RGB images. The model was trained using experience replay [75] so that the observation is
saved at each time-step (et = (st ,at ,rt ,st+1)) creating a dataset D = e1,e2, ...,eN . This dataset
is then pooled over training episodes into a replay memory. Finally, Q-learning updates are
carried out through minibatch updates over samples of experience (e⊂ D) selected randomly
from the stored observation samples. Such an approach results in a new algorithm, which the
authors named deep Q-learning (see Algorithm 1).

Initialize replay memory D to capacity N;
Initialize action-value function Q with random weights;
for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1);
for t = 1, T do

With probability ε select random action at ;
otherwise select at = maxaQ∗(φ(st),a,θ);
Execute action at in emulator and observe reward rt and image xt+1;
Set st+1 = st ,at ,xt+1 and preprocess φt+1 = φ(st+1);
Store transition (φt ,at ,rt ,φt+1) in D;
Sample random minibatch of transitions (φ j,a j,r j,φ j+1) from D;

Set y j =

{
r j f or terminal φ j+1

r j + γmaxa′Q(φ j+1,a′;θ) f or non− terminal φ j+1

}
;

Perform a gradient descent step on (y j−Q(φ j,a j;θ))2;
end

end
Algorithm 1: Deep Q-learning algorithm [89]

Using this algorithm, the neural network initialized with random weights will be trained
to represent the action-value function Q(st ,at) where the output nodes represent the Q-values
calculated for action at in state st . Although in the original paper the authors used raw images
as input (state representation) for the neural network it is possible to use the values of the
features describing the state as input to the network. In such a scenario, the number of input
nodes is equal to the number of features. The number of output nodes is equal to the number
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of actions available to the actor. The gradient descent step is performed using the gradient
shown in Equation 3.3

▽θiLi(θi) = Es,a∼ρ(·);s′∼ε [(r+ γmax
a′

Q(s′,a′;θi−1)−Q(s,a;θi))▽θiQ(s,a;θi)], (3.3)

where

• θ is the set of weights of the neural network

• Q(s,a;θ) is the value function

• ▽θiQ is the gradient of the value function

• Li(θi) is the loss function

• ▽θiLi(θi) is the gradient of the loss function

This model shows a number of advantages over standard online Q-learning. First, greater
data efficiency is accomplished since each step of experience is potentially used in the weight
updates. The algorithm also addresses the inefficiency of learning from consecutive samples
that are strongly correlated. By randomizing the samples, such correlations are broken. Third,
experience replay also minimizes the effect of the current parameters since the behavior
distribution is averaged over many of its previous states [89]. It is important to note, however,
that sampling is completely randomized and done using uniform distribution from the dataset
D. A sophisticated sampling strategy that targets experiences from which the model can
learn the most might lead to more effective learning, such as in [91]. One more advantage of
deep reinforcement learning is that it is more resilient to non-discrete feature values, given
that states with similar feature values are similar.

The deep reinforcement learning algorithm is model-free, it uses samples from direct
communication with the environment without constructing an estimate of the environment.
Similarly to the standard Q-learning, it is also off-policy, and uses an ε-greedy strategy to
ensure adequate exploration of the state space. Apart from ε , the deep Q-learning model has
two further main hyperparameters: learning rate (α) and discount factor (γ). In practice, ε

has a very high value (near to one) at the start of the training process and is then decreased
until it reaches its final value that ensures a sufficient proportion of exploration.
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Fig. 3.3 Schematic overview of an actor-critic algorithm [42]

3.3.3 Actor-critic methods

There are two main approaches to reinforcement learning: value-based and policy-based.
Q-learning and deep Q-learning are both value-based, since they calculate the expected
value for executing an action in a given state to determine whether the action is optimal.
Policy-based methods, on the other hand, do not use a value function to optimize the policy,
an approach most suitable for continuous or stochastic action spaces, although its drawback
is that it requires a good score function to assess how good a policy is. Actor-critic methods
[9] combine these two approaches to train a RL model.

Actor-critic methods use two models to train the proper behavior: the actor is responsible
for producing the actions through a policy function π(s,a,θ), while the critic’s role is to
evaluate the current policy determined by the actor through a value function q̂(s,a,w). This
evaluation is often done by temporal difference [122], least-squares temporal difference [16],
or residual gradients [7]. The critic approximates the value function based on the samples
gathered from observations. This value function is then used to update the actor’s policy
parameters to improve performance through proper action selection. Convergence is ensured
by a small step size in the policy gradient, meaning that a change in the value function results
in only a small change in the policy [8].

The interaction between the actor and critic is shown in Figure 3.3. Given the current
state (x), the actor generates a control input (u). The reward acquired from the change in the
environment’s change (r) is processed by the critic, which uses the reward to evaluate the
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quality of the current policy by adapting the value function estimate. The actor is updated
only after a few evaluation steps performed by the critic (as indicated by the dashed line
in Figure 3.3). The actor and critic networks are updated using the gradients showed in
Equations 3.4 and 3.5 respectively.

∆θ = α ▽θ (log πθ (s,a)) q̂w(s,a) (3.4)

∆w = β (R(s,a)+ γ q̂w(st+1,at+1)− q̂w(st ,at)) ▽wq̂w(st ,at), (3.5)

where

• α and β are the learning rates applied to the policy and value functions

• q̂w(s,a) is the estimated action value

• R(s,a)+ γ q̂w(st+1,at+1)− q̂w(st ,at) is the temporal difference error

• ▽wq̂w(st ,at) is the gradient of the value function

To avoid high variability of value-based methods, the advantage function A(st ,at) can
be used instead of the standard value function. The advantage function (see Equation 3.6)
reveals the improvement accomplished by taking one action compared to taking other actions
in the same state (V (st)). If the value of A(st ,at) > 0, it means that the given action is
better than the average expected value in the given state and so the gradient is pushed in that
direction. A(st ,at) < 0 indicates that the action does worse than the average value in the
given state and so the gradient is pushed in the opposite direction.

A(st ,at) = Q(st ,at)−V (st) (3.6)

By substituting rt + γV (st+1) for Q(st ,at), we get Equation 3.7 representing the temporal
difference error which can be used as a good enough approximation of the advantage function.

A(st ,at) = rt + γV (st+1)−V (st) (3.7)

There are two different strategies for implementing an actor-critic agent:
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• Advantage Actor-Critic (A2C) – in this setup, there is a global network that is being
updated by multiple instances of agents (workers) synchronously. The workers first
finish their training through interacting with their own copy of the environment. Then,
the gradients calculated by the individual workers are averaged and this average is used
to update the global network. A2C has been shown to more efficiently utilize GPUs
and work better with large batch sizes while achieving the same or better performance
than A3C [136].

• Asynchronous Advantage Actor-Critic (A3C) [88] – in this setup, there is a global
network that is being updated by multiple instances of agents asynchronously. The
agents interact with their own version of the environment in parallel and without
affecting each other’s experiences, resulting in a speedup in the speed of training.
Since the agents copy the global network parameters independently, it is possible that
some agents use different versions of the policy which will make the aggregated update
sub-optimal.

3.3.4 Recurrent reinforcement learning

Recurrent reinforcement learning is a combination of two neural networks: deep Q-networks,
and recurrent neural networks. Since recurrent neural networks have their own memory, and
can model time series, recurrent reinforcement learning models are able to select actions
based on the previous steps and actions selected. Therefore, they are a suitable model for any
problem where action selection has a lasting effect, e.g. in human–robot interaction.

Formally, networks without a memory will observe time series as a Partially-Observable
Markov Decision Process, which describe an environment that has incomplete and/or noisy
state information. Deep recurrent Q-networks were first described in [48] in the context
of game play. The input of the network was screenshots from classic Atari games. After
convolution, an LSTM layer was used as a model for remembering temporal change, before
a regular deep Q-network would select actions (see architecture in Figure 3.4). An evaluation
of the recurrent network showed better performance than standard deep Q-networks, but the
recurrent nature of the network raised a technical issue when training the model.

In section 3.3.2 we described the advantages of experience replay that are still desired
for a recurrent deep Q-network (RDQN). However, random sampling of past experience
is not viable for a recurrent network because the whole time series must be considered
when training the model. Therefore, two options are available when training a RDQN. With
bootstrapped sequential updates the model remembers whole episodes that are then selected
randomly from the replay memory, the LSTM’s hidden state (or memory) is carried forward
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Fig. 3.4 Architecture of a deep recurrent Q-network [48]

throughout the episode. In bootstrapped random updates, episodes are selected randomly,
but not the entire episode is replayed, instead just a part of it, starting at a random time step.
The LSTM’s hidden state is zeroed at the start of each update. Sequential updates are better
for training the LSTM, but they violate random sampling policy. Random updates fulfil the
requirements for random sampling, but are inefficient in training the LSTM because of the
zeroing of the hidden state.

3.3.5 Fuzzy reinforcement learning

Another hybrid reinforcement learning method is fuzzy reinforcement learning, which com-
bines fuzzy logic with a reinforcement learning network. One of the most well-known imple-
mentations is the Generalized Approximate Reasoning based Intelligent Control (GARIC)
structure (see Figure 3.5) [12].

The GARIC architecture has three main components: the Action Selection Network
(ASN), the Action Evaluation Network (AEN), and the Stochastic Action Modifier (SAM).
ASN maps its input, a state vector, into a recommended action F, using fuzzy inference.
AEN can be implemented as a neural network or a fuzzy system, and it has two inputs, a
state vector, and a failure signal, which it combines to calculate a scalar score indicating the
desirability of the state. The scalar score is later used to calculate an internal reward r′. SAM
considers the outputs of ASN and AEN, the proposed action F and the internal reward r′, to
reach a final selected action F ′ that is than applied onto the physical system or environment.
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Fig. 3.5 GARIC structure [12]

Training in GARIC is done through updating the ASN and the AEN. If the AEN is
implemented as a neural network, its weights are updated, if it is implemented as a fuzzy
system, the fuzzy parameters are adjusted. Either update takes place using temporal difference
learning method (hence the combination of fuzzy systems and reinforcement learning). In
the ASN, the parameters describing the fuzzy membership function are updated through the
gradient descent approach.

In [112] the authors present a solution similar to GARIC, which combines reinforcement
learning with a recursive fuzzy algorithm, the Active Learning Method, which expresses
a multi-input-single-output system as a fuzzy combination. The input-output relations,
mapping the states into actions in the case of reinforcement learning, are modeled for each
input individually and are then combined to get the overall system model. This modeling is
done through a fuzzy interpolation method which derives a smooth curve among multiple data
points by applying a three-dimensional membership function. The value of this membership
function represents the belief for the data points and their neighbors. The system can learn
with or without a predefined fuzzy system by leveraging random actions to explore the
unknown system.

3.3.6 Inverse reinforcement learning

Inverse reinforcement learning (IRL) tries to extract a reward function from an observed
optimal behavior, exactly opposite to other reinforcement learning methods. This approach is
especially suitable for modeling human behavior, learning from demonstration, and learning
from teleoperation, problems that can be considered apprenticeship (or imitation) learning
[96]. When solving a problem with IRL, a key issue is degeneracy, meaning that there are
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multiple reward functions for which the observed policy is optimal. The need for inverse
reinforcement learning arises from multi-parameter reward functions, where the relative
weights of each parameter has to be considered along with the function itself. Algorithms of
IRL are also suitable for problems where defining a reward function is not possible due to the
ambiguous nature of the desired goal, for example ensuring the “quality” of human–robot
interaction through the robot’s behavior.

There are two main types of IRL algorithms: first, when the state space is finite, the
model is known, and the complete policy has been observed. In such a case, it is easy to find
a set of reward functions for which the policy will be optimal (for requirements and proof
please refer to [96]), choosing a reward function from this set is not so straightforward, even
though it is desirable, since some reward functions can be seen as less meaningful to the
problem than others. Reward function selection is possible by adding some requirements
not necessarily inherent to the IRL problem, namely, that the observed policy is uniquely
optimal for the reward function, and that any deviation from the observed policy is penalized
highly. Reward functions with smaller rewards are also often preferable to more robust and
complex reward functions. For an infinite state space, another problem arises, since the
possible reward functions cannot be checked successfully, or only at a high computational
cost. Therefore, a large but finite set of states is sampled, upon which it is possible to evaluate
the reward functions [96].





Chapter 4

Cloud computing and cloud robotics

The National Institute of Standards and Technology defines cloud computing as “a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction” [83]. This definition also lists five essential
characteristics, three service models, and four deployment models of cloud computing.

The five characteristics of cloud computing [83] are:

• on-demand self-service – the user can provision computing capabilities (e.g. server
time, storage) as needed and does not need human interaction with a cloud service
provider to do so

• broad network access – computing capabilities are available over the network (usually
the Internet) and are accessible through standard mechanisms from various devices
and platforms

• resource pooling – the provider’s computing resources are available to multiple users
using a multi-tenant model with physical and virtual resources dynamically assigned
and reassigned according to consumer demand

• rapid elasticitiy – computing capabilities can be elastically provisioned and released to
scale rapidly outward and inward

• measured services – cloud systems automatically control and optimize resource use.

The three cloud service models [83] are:

• Software as a Service (SaaS) – the user is able to use the cloud provider’s applications
running on a cloud infrastructure
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• Platform as a Service (PaaS) – the user is able to deploy onto the cloud infrastructure
their own applications using programming languages, libraries, services, and tools
supported by the provider

• Infrastructure as a Service (Iaas) – the user can provision processing, storage, networks,
and other computer resources where she can run arbitrary software. The user does
not manage or control the cloud infrastructure but has control over operating systems,
storage, and deployed applications.

Cloud deployment models describe how the cloud is operated and how the user has access
to the service resources. [83] defines four deployment models:

• private cloud – the cloud infrastructure is provisioned for exclusive use by a single
organization comprising multiple consumers

• community cloud – the cloud infrastructure is provisioned for exclusive use by a
community of consumers from different organizations that share some concerns

• public cloud – the cloud infrastructure is accessible by the general public

• hybrid cloud – the cloud infrastructure is a composition of two or more distinct cloud
infrastructures that remain unique entities and are deployed according to any of the
above-mentioned deployment models.

4.1 Cloud robotics

Since robots have limited computational, storage, and battery capacities, the concept of
merging them with more robust computing resources was considered early on. The motivation
behind such a system is that, by offloading computationally heavy tasks from the robot to
dedicated hardware accessible through some sort of network, it is possible to enhance the
robot’s capabilities without having an effect on its design (for a general architecture see Figure
4.1). There is only one requirement for the robot, that is, it must be able to communicate
with the dedicated hardware.

The idea of a hybrid robotic system with remote dedicated hardware and a robot stems
from the mid-90s and originated with the work of Inaba [53], where the robots had a radio-
linked remote brain still in the vicinity of the robot. The advent of the world wide web
brought about online web robotics. The earliest works focused on teleoperation via the
Internet [39], on networked robots with wireless sensor networks, and on networked control
systems [68]. The benefits of distributed processing in networked robotics along with new
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Fig. 4.1 General architecture of cloud robotics systems with the most common applications
listed [131]

challenges were first described by McKee in [82]. The term “cloud-enabled robots” or “cloud
robotics” was coined by James Kuffner in 2010 [67].

4.2 Advantages of cloud robotics

The growth in the complexity of problems robots had to face in research and application
exposed an inherent limitation. Solving computationally heavy problems is only possible
with the necessary hardware which results in complex robotic builds that might be counter-
productive to the robot’s task. A possible solution is to use dedicated servers which alleviate
the load on robots. This realization fueled research on the use of cloud computing in robotics
with the goal to lower requirements on physical robots. In the following subsections we
discuss some of the advantages of cloud robotics that can be organized into four overlapping
categories: offloading computation, collective learning, knowledge-base on the cloud, and
public solutions.

4.2.1 Offloading computation

Cloud computing makes it possible to execute complex computations and use robots with
high-performance computing applications. This enables simpler robotic system designs and
robot bodies which improve the maintainability of the robot. Furthermore, cloud computing
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can speed up computationally-intensive robotics and automation systems applications [60][1].
Rapyuta, the RoboEarth cloud engine, allows computationally expensive algorithms to run
in the cloud [52]. In [129] cloud computing was used for sample-based statistical motion
planning. Cloud-based sampling can also support grasping [61]. The Cloud Enabled Robotics
System [76] allows robots to form a local networked system and offload heavy computation
tasks to the server. Cloud computing makes mapping, and video and image analysis easier
[90][97].

Offloading computational tasks to the cloud also has its new challenges, such as network
latency and quality of service [60]. Remote task execution often requires the transfer of
real-time sensitive data, what might be hindered by network delays [131]. Therefore, an
offloading of tasks more related to the robot’s immediate actions, such as motion, is still not
plausible. Methods used for cloud robotics must also be designed to degrade gracefully when
cloud resources aren’t available [60].

4.2.2 Collective learning

Multi-robot systems are an essential field of robotics, and cloud computing provides a
suitable platform for networked robots to share data, process information and facilitate
machine learning [106]. Collective robot learning can enhance the capabilities of robots with
more limited computational resources[41], and improve the overall accuracy of the system
[131].

The “Lightning” framework uses cloud computing for parallel planning and trajectory
adjustment [13]. The Ubiquitous Networked Robot Platform manages distributed task
execution and supervision [57] by abstracting away from the robotic hardware and offering a
generic interface. The MyRobots project envisions a social network for robots to support
collaboration. A small scale cloud infrastructure for information sharing among networked
robots was presented in [128]. Communication protocols facilitating task offloading and
information sharing were proposed in [51]. Collective learning environments for ubiquitous
robots were described in [23] and [113]. The Kiva automated Materials Handling System
supported collective learning for mobile robots moving packages in warehouses [24].

4.2.3 Knowledge-base on the cloud

Most robots are equipped with cameras and sensors that collect data supporting decision
making but the volume of these data makes it impossible to manage or share them among
multiple robots using only the robots’ onboard capacities [106]. Large sets of data such
as images, videos, maps, sensor networks, etc. can further facilitate machine learning in
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Fig. 4.2 Architecture of RoboEarth [131]

robots. This has been demonstrated mainly in the context of computer vision [60] (object
and scene recognition), path planning, and grasping [93]. Google Goggles, a free image
recognition service for mobile devices, has been incorporated into a cloud-based robot
grasping system [59]. RoboEarth (architecture shown in Figure 4.2) is also used to gather
and provide technical support for robotic navigation and grasping [131].

Social robotics can also benefit from data sharing on the cloud. This has advantages
primarily in the personalization of interaction, where data gathered about a person might be
too big to be stored long-term on the robot’s memory without negatively affecting the robot’s
performance.

Although big data on the cloud can hugely improve robotic applications, it also poses new
challenges for guaranteeing the quality of datasets and querying data. Datasets collected from
distributed sources often contain erroneous, duplicated, or corrupted, so-called dirty data that
can negatively influence data processing and machine learning. Sampling algorithms can
provide approximations to keep running time acceptable. Another challenge is caused by the
variety in the representation of data [60] due to the lack of standards [104]. Keeping data in
the cloud further raises security concerns especially in the case of sensitive data gathered in
private or corporate settings [132].
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4.2.4 Public solutions

The development of cloud robotics facilitated the use of open-source or public solutions
for robotic applications. Open-source licenses allow the improvement of the code reuse
rate and development efficiency [131] and they provide access to datasets, benchmarks, and
simulation tools [60]. The best-known systems for supporting open source in cloud robotics
are the Robot Operating System (ROS) and RoboEarth. ROS’s core part was designed at the
Willow Garage research laboratory and it provides basic tools for distributed computing [131].
A bigger share of solutions is developed and maintained by the international ROS community
and includes algorithms, frameworks and hardware drivers. ROS is slowly becoming a
standard for robot developers [60]. RoboEarth is more directed at collaborative solutions for
multi-robot systems, providing a network database system that is updated dynamically by
robots around the world [131].

Besides open source solutions that can be integrated in the working of robotic systems,
there are a number of open source simulation libraries available for speeding up the devel-
opment of new systems. The overall availability of datasets and cloud services can also
lead to the improvement of robotic system intelligence. While the growing rate of sharing
ready-to-use solutions can facilitate the development of cloud robotics, open source solutions
present the same problems as shared datasets, since the quality of code must be guaranteed.

Cloud services at the level of SaaS can also be used in robotic applications to enhance
robotic behavior, especially in social robotics where most of the tasks expected to be executed
by the robot are computationally heavy. Social input, such as gestures, emotions, and affect
are an integral part of human–human interaction and they provide a communication channel
universal across multiple cultures. The observation and processing of these non-verbal cues is
natural for humans but are hard to replicate in machines. However, they are essential in HRI
since an incorrect assessment of the human’s emotional state could lead to an inappropriate
response from the robot.

In recent years cloud-based emotion assessment services were made available for in-
clusion in user applications, such as Google Vision API, Microsoft Face API, Amazon
Rekognition, Affectiva Emotion, and Sightcorp F.A.C.E. API. Information about a human’s
emotional state can also be obtained from speech by using speech-to-text methods and
processing the transcribed text independently. A number of speech recognition services are
Google Speech API, Bing Speech API, API.AI, Speechmatics, and Vocapia Speech to Text
API, with further services focusing on specific languages. Emotion assessment analysis is
possible with tools like IBM Watson’s Tone Analyzer, Receptiviti Natural Language Person-
ality Analytics API, Alchemy API, and Bitext Text Analysis API. Although the two-step
speech analysis method is much more widely used, APIs recognizing emotions directly in
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speech are also available, including Good Vibrations, Vokaturi, and Affectiva’s Emotion API
Speech.

4.3 Cloud robotics for adaptation

Due to its high level of availability, cloud computing provides a suitable framework for the
adaptation and personalization of human–robot interaction. In this section we look at the
advantages of cloud computing, namely offloading computation, knowledge-base on the
cloud, and collective learning, with a specific emphasis on personalization.

Since adaptive human–robot interaction requires the use of machine learning methods,
developers of adaptive robotic systems might run into the problem of limited computational
capacity on the physical robots. Although some machine learning methods can be executed
on the robot’s local processor, for a more robust and more accurate solution, usually compu-
tationally heavy methods are needed. A further problem arising with these methods is that
their execution can be optimized only on specific platforms or using specific frameworks,
ones that the physical robot does not necessarily support. Maintenance can also be an issue,
since an update of the software frameworks and libraries supporting machine learning must
be executed on all robots being used in a robotic system.

In addition to solving these problems, the independence of the adaptation is another
motivation for migrating these operations to a cloud environment. Adaptation of HRI takes
place with regards to the human user and not the physical robot. Therefore, we expect that
the same robotic system will display the same behavior when interacting with a given user,
regardless of the actual physical robot being used. It is important to note however, that
the physical robot’s capabilities might limit the extent of adaptiveness (e.g. when adapting
the social behavior of a robot for HRI, an armless robot cannot perform any gestures and
hand movements), which must be taken into consideration when developing a cloud-based
adaptive robotic system. Differences in robots’ capabilities can be bridged by applying a
robotic middleware that interacts with the adaptive component deployed in the cloud, and
translates the selected action into a form that is executable by the physical robot, which
enables the development of multi-platform robotic systems (as depicted on Figure 4.3).

The adaptation of HRI requires the gathering and analysis of data about the interaction
and the interacting human partner. These data are used to create a model of the interacting
human partner, and to evaluate the robot’s actions with respect to their acceptance by the
human. Once again, we can see that such data are usually not connected to a specific physical
robot (although a human might like some gestures or utterances more when performed by a
certain type of robot). Therefore, it is more reasonable to move the database containing this
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information into a cloud environment, especially when considering that the adaptive model
must be in a near-constant connection with the database, and the cloud environment offers
higher availability. The final motivation for migrating the database to the cloud is the data’s
nature; since information about a human gathered during an interaction is usually personal
and sensitive, it is better to keep these data in the cloud environment that provides a higher
overall level of security.

The use of a central database is tightly connected to collective learning, which is enabled
exactly by the use of one database for gathering the data. In a robotic system, where each
physical robot has its own database, learning is facilitated only by the interactions the physical
robot has with different humans. In contrast, robots can rely on the adapted behaviors of
other robots in a robotic system with a single central database. This results not only in faster
learning for each individual physical robot, but it also ensures that each robot in the robotic
system will display the same behavior to an interacting human partner. While this should be
the default solution for a cloud-based robotic system, in the case that different behavior from
robots is expected, each robot can have its own database representing its adapted behavior in
the cloud. The robotic system as a whole still benefits from higher availability of data and
greater speed thanks to a direct connection between databases and the adaptive component.

In the previous paragraphs we looked at how cloud computing can aid adaptive robotic
systems in particular. We showed that the development and use of robotic systems is easier
using a cloud environment. However, we must also elaborate on the advantages the cloud
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provides for the maintenance of the system. By deploying the adaptive model on the cloud
we ensure that all physical robots display the same behavior and rely on the same version of
the robotic system. This characteristic is essential when updating the adaptive component.
While in a robotic system where each robot is responsible for adapting its own behavior, the
adaptive component must be updated on all physical robots, this update can be carried out
centrally in a cloud-based system, and the up-to-dateness of the robotic system is guaranteed.
A cloud-based robotic system is also more resistant to faults; if a physical robot is damaged,
it can easily be replaced by another robot (not necessarily) of the same type without any need
to migrate data and/or losing the adapted behavior.





Chapter 5

PhD thesis proposal

5.1 Scientific goals

5.1.1 Scientific goal 1

Design an on-line reinforcement learning method tailored for the adaptation of robotic
tutors for higher learning gains

Measure of success: analyze the learning gains of students using an adaptive robotic
tutoring system. In an adaptive tutoring system, learning should take place at a near-
constant rate without the student reaching a plateau.

As described in section 2.3, adaptation of human–robot interaction is most often done
using the Wizard of Oz methodology with the robot learning behavior from the human
Wizard. This presents a number of problems, most notably that the teleoperation might
become monotonous to the Wizard very quickly which can have a negative effect on the
quality of the interaction. The first scientific goal of this thesis is to address this problem.

The robot participating in a human–robot interaction can learn the appropriate social
behavior by directly observing the interaction and deducting rewards for actions from the
reaction of the human partner. The human’s reaction can be observed in two dimensions:
first, the social aspect, by analyzing the human’s social input, such as gaze, gestures, facial
emotion, mood, etc.; second, by considering the nature of the reaction itself. As in all use
cases of reinforcement learning, the success of the learning model depends heavily on the
suitability of the reward function. Therefore, in our research, it is important to select an
evaluation scenario where designing an appropriate reward function is straightforward.

Due to previous experience with the topic, we decided to test our reinforcement learning
method in the context of cognitive stimulation therapy, and in a skill development setting
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in addition. These two use cases fit our expectations since the reward can be determined
based on the correctness of the human’s answer to a question of the robotic tutor. This does
not mean however that the robotic tutor’s aim is to maximize the number of correct answers
the human gives, but to facilitate a learning process at the end of which the human will
have achieved the highest learning gain. Therefore, it is necessary for the tutor to select
questions to which it expects an incorrect answer from the human learner, so that learning
can take place, while also considering the motivation of the human learner to continue in the
interaction, since a too high proportion of incorrect answers might be demotivating to the
human learner.

From the point of view of implementation, we will create a tutoring system to test and
evaluate the reinforcement learning method. Unlike other tutoring systems (see Chapter 1),
ours will not require a large set of rules or constraints to evaluate the student’s knowledge, to
identify gaps in it, and to offer remediations. Instead, we will use reinforcement learning
to model the student’s knowledge and level of skills, and to adjust the tutor’s behavior. Our
tutoring system will be implemented using cloud computing and will have the following four
components (for an architecture see Figure 5.1):

• student model – Using reinforcement learning, this model will predict whether the
student’s answer to a given question will be correct or incorrect. The component does
not try to retrace the student’s thinking process and neither does it try to understand why
the student’s answer might be wrong. Student modeling takes place in a “black box”
through reinforcement learning that can nonetheless model the student’s knowledge
and skills with an increasing accuracy as the learning process progresses.

• problem pool with corresponding level of difficulty – A representation of the mate-
rial to be presented and taught to the student, it is necessary to be able to gradually
increase the difficulty of questions.

• teaching model – By interacting with the student model and selecting questions from
the set of problems, this component is responsible for the pedagogical strategy of the
system. Its goal is to select problems in a way that keeps the student constantly just
beyond his or her comfort zone. To be able to do this, it relies on the student model to
predict the student’s response and its correctness.

• user interface – As in any tutoring system, the user interface is responsible for
communicating with the student and bridging the gap between the system’s internal
representation of the material and the student’s understanding. In our system, we will
use the humanoid robot Nao from SoftBank Robotics/Aldebaran.
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Although the adaptive method will be tested primarily in the context of human learn-
ing and cognitive stimulation therapy, it is important to note that it is adjustable for any
human–robot interaction where the reward function can be defined in a similar way, that is,
reward to the actor (robot) is given based on the reaction and/or performance of the human
communicating partner. By adapting the student model we can use it in other human–robot
interaction settings for modeling the reaction and/or performance of the human partner.

5.1.2 Scientific goal 2

Test and evaluate a robotic tutor that uses reinforcement learning to personalize the
human learning process

Measure of success: compare learning gains of students using a tutoring system
with adaptive question selection with learning gains of students using a tutoring sys-
tem with randomized question selection.

Research on tutoring systems is mostly conducted in the context of knowledge acquisition.
Our second scientific goal is to test the system described in section 5.1.1 in the context of
skill development. Evaluation will be done in two dimensions: learning gain, and social
aspect.

For measuring learning gain, we will compare the human subjects’ performance before
and after the tutoring session. The tutoring session will be based on the concept of deliberate
practice as described in section 1.1.3, where a robot will take the role of the teacher/tutor. The
robotic tutor will observe the answers of the human learner and will adjust the difficulty of
questions accordingly, identifying problematic aspects that must be targeted during tutoring
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to achieve the highest possible learning gain. For the optimal learning process, the tutor
should select questions and problems that are just beyond the human learner’s comfort zone
and current level of understanding. To evaluate whether the questions selected by the robotic
tutor indeed lead to higher learning gains, we will deploy two tutoring systems: one that will
use our reinforcement learning method from section 5.1.1 for question selection, and one
that will select questions randomly. The learning gains of students interacting with the two
tutoring systems should show whether or not the learning process is optimized by adaptive
question selection.

The social dimension of the human–robot interaction between learner and tutor will be
assessed through a questionnaire. The human subjects’ answers to the questionnaire should
reflect their enjoyment of the interaction, their motivation during the learning process, and
their overall evaluation of the robotic tutor.

5.1.3 Scientific goal 3

Conduct a long-term test of robotic tutor
Measure of success: compare learning gains of students interacting with a robotic

tutor with the learning gains of students learning through a non-embodied tutoring
system. Evaluate the novelty effect of the robotic tutor in a long-term interaction.

As described in section 2.5, the application of robotic tutors in educational settings can
further increase the learning gains of a student due to the positive effects of the robotic tutor’s
embodiment, although some research suggests that the novelty effect of interacting with the
robot also contributes to the positive learning gains. Our third scientific goal addresses the
effects the robot’s embodiment and novelty can have on the learning process.

To examine the embodiment effect, we will compare learning gains of students interacting
with a robotic tutor and a simple web-based user interface. It is important to note that the two
tutoring systems will have the same functionality and the same question selection strategy.
This is possible because the reinforcement learning model does not require information on
the human learner other than his or her answer, which can easily be provided in both settings.
Since informative feedback is part of tutoring, we believe that the robotic tutor will have an
advantage due to its embodiment, since human learners will probably react more positively
to feedback given by a robot than a simple message appearing on a computer screen.

Most experiments with robotic tutors are short-term, usually comprising only a few study
sessions with a post-learning measurement of learning gains. The results of such experiments
might be compromised by the novelty effect of students interacting with the robot for the first
time. Therefore, we propose a long-term evaluation of the robotic tutor which would ensure
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that this novelty effect wears off. Furthermore, by selecting students who are already familiar
with working with the used robotic platform for the evaluation we can further minimize the
impact of the novelty effect.
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5.2 Technological goals

5.2.1 Technological goal 1

Design and implement a cloud service providing reinforcement learning models
Measure of success: test and evaluate the cloud service in a real-life use case.

Section 4.2 describes the advantages of cloud computing to robotics. In the context of
human–robot interaction most cloud-based solutions focus on either offloading computation
to a dedicated hardware on the cloud, or knowledge sharing between robots. Commercial
cloud services support the processing of social input (e.g. facial emotion assessment, speech
recognition) or synthetizing social input (e.g. text-to-speech). With the first technological
goal of this thesis, we would like to create a cloud service of a new type.

Reinforcement learning is a general machine learning approach that is used in on-line
learning, especially personalization, and it is used more and more often in robotics research.
Our goal is to deploy a cloud service that provides its users with the possibility to define and
use reinforcement learning models in the cloud. The service will support various methods
of reinforcement learning, such as Q-learning, SARSA, deep Q-learning, and actor–critic
methods of deep reinforcement learning. Communication with the service will be possible
through a RESTful API, whereby the user will send requests to be processed by the service.
These requests will contain all information to train the reinforcement learning model. The
service will also support action selection, where the user has to send all the information
related to the current state of the environment and the service will return the most appropriate
action to be executed on the user’s side. The user will define and configure the learning
model along with hyperparameters when he or she starts using the service.

In accordance with the benefits of cloud computing presented in section 4.2, such a
service would fall into the category of offloading computation, knowledge sharing, and
collective learning. Additionally, by focusing on the application of reinforcement learning
in robotics research, our service would make the development of adaptive human–robot
interaction systems simpler and would also support code reuse. Since using our cloud service
would mean decreased requirements on the physical robot, the range of robots applicable in
human–robot interaction research would also widen. To test and evaluate the service, we will
use it for implementing the system outlined in section 5.1.1 and will also incorporate it into
the Cloud-based Wizard of Oz teleoperation system developed in our lab to enable on-line
learning from the Wizard through reinforcement learning.
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5.2.2 Technological goal 2

Design and implement a cloud-based application for personalization of human–robot
interaction

Measure of success: test and evaluate the web application in a real-life use case.

In line with the principles of cloud robotics outlined in Chapter 4, our second technolog-
ical goal aims to create a cloud-based virtual robot that defines all the functionalities and
behavior of a physical robot. This division can be viewed as having the “brain” of the robot
on the cloud while embodiment is done through the use of a physical robot. Such a system
has the following advantages:

• decreased requirements on the physical robot – since the bulk of computation is
offloaded to a cloud environment, the only requirement on the physical robot is the
ability to communicate with the cloud-based virtual robot

• simpler maintenance – the functionality is fully defined in the cloud environment,
by updating the functionality in the cloud, all physical robots connected to the same
virtual robot will change their behavior

• platform-independence – the virtual robot works on a higher level of abstraction of
robot behavior, it is up to the individual physical robots to execute the selected actions,
which makes it possible to connect different types of physical robots to the same virtual
robot

• sharing data and behavior – from the point of view of personalization, multiple phys-
ical robots can share their observations of and experience with the same human subject
through the virtual robot, hence enabling quicker and more detailed personalization in
real time

The system architecture of a robotic system with a cloud-based virtual robot along with
the steps in the human–robot interaction is depicted on Figure 5.2.
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Chapter 6

Scenario for testing

In this chapter we outline our planned research based on the goals presented in Chapter 5.
We describe two possible use cases, namely skill development for students, and cognitive
stimulation therapy in elderly care. Although the two use cases are similar in nature, their
purpose is different: the main measure of success of skill development is the learning
gain of students, and the success of cognitive stimulation therapy can be measured by the
performance of the humans undergoing therapy.

In accordance with the goals of this thesis, we will implement a tutoring system with two
interfaces: a web application with a graphical user interface, and a robotic system with a
robotic tutor. In the cognitive stimulation therapy setting, only the robotic tutor will be used,
for the skill development scenario we will evaluate both interfaces to compare their effects
on the learning experience.

The goals of the tutoring system in cognitive stimulation therapy will be to adapt its
behavior to the elderly’s capabilities. The therapy will have the form of simple cognitive
games. As mentioned above, the primary aim of therapy is not to improve the elderly’s
cognitive skills, but to aid in their retention. This can be accomplished by adjusting the
games to better meet the elderly’s current cognitive capabilities. This adaptation can have
multiple forms, e.g. difficulty of questions, allotted amount of time for answers, and types of
games. One major risk in deploying a learning algorithm is that to ensure the best possible
performance of the elderly, the tutoring system might select easy questions, which in turn
would diminish the effects of the therapy. Therefore, an appropriate reward function must be
devised that takes into consideration not only the number of correct answers, but also the
number of incorrect answers, and the types of questions that were incorrectly answered. As
additional information, the elderly’s emotional state can be supplemented to the learning
algorithm to maintain the elderly’s motivation and enjoyment of the interaction.
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We will test end evaluate the system in the context of cognitive stimulation therapy the
following way:

1. If possible, records from previous therapy sessions will be used to pre-train the tutoring
system.

2. All participating elderlies will be informed of the goals of the experiment and will
have the opportunity to ask any questions they might have about the tutoring system.

3. A small number of therapy sessions will be carried out with each participating elderly
using the robotic tutor.

4. The therapy sessions will be evaluated by the participating elderlies (from the aspect
of their enjoyment of the therapy and acceptance of the robotic tutor) and an expert
(from the aspect of the therapy’s nature and success).

In the skill development setting, the performance of the tutoring system will be evaluated
based on the learning gains of its users. The exact domain of skill development is yet to be
determined, but for research purposes we will choose a domain with a relative simplicity
and one where participants can be expected to have previous experience. Two versions of
the same tutoring system with different interfaces will be used, a robotic tutor and a web
application, in order to compare learning gains when either of them is used. Evaluation of
both alternatives will have the same structure:

1. All participating students will be informed of the goals of the experiment and will be
introduced to basic functions of the tutoring system to prevent compromised data due
to an inability to interact with the system.

2. The students’ performance at the skill to be developed will be assessed using the
tutoring system.

3. Skill development will take place across multiple study sessions with the tutoring
system. During sessions, the system’s teaching model will adjust the teaching strategy
by spacing out the learning process and selecting problems with the appropriate level of
difficulty, and the student model component will be responsible for the personalization
of the learning process.

4. The students’ skill level will be measured immediately at the end of the learning
process to measure the learning gain acquired during the study sessions.
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5. The students’ skill level will be measured after some period of time to measure the
level of long-term retention.

The results of our experiments can contribute to research in multiple domains such as
intelligent tutoring systems, reinforcement learning, and robotics.

In the field of intelligent tutoring systems, our system can be used to test whether it is
possible to model a student’s knowledge using only reinforcement learning and without
explicitly defined rules of the material being taught. Reinforcement learning will also be
used to adjust the pedagogical strategy, something that has been the subject of some research
in tutoring systems, but training was usually done before study sessions took place in contrast
with our planned approach of learning on-line and directly from study sessions. We will also
explore the effect of spaced learning in skill development, and to our knowledge, our system
will be the first attempt in merging the theory of deliberate practice with intelligent tutoring
systems.

For the study of reinforcement learning and its application, this thesis can have two
main contributions. First, the reinforcement learning as a service concept can be utilized by
multiple solutions, independently of use case. Second, our method of applying reinforcement
learning to student modeling can be used with some modifications to other settings.

Within robotics and human–robot interaction research in particular we will try to answer
questions regarding the novelty effect and the effect of embodiment on the interaction. We
will further explore the methods and techniques applicable to social robots in education and
our way of modeling student knowledge and skill level could be applied to other types of
human–robot interaction since creating the behavioral model of the human interacting partner
is an integral problem in human–robot interaction research.





Chapter 7

Conclusion

In this work we presented the theoretical background supporting the aims of the PhD thesis.
First we provided an overview of the human learning process, and skill development, and

described various methods connected to it. We also explored the problem of knowledge and
skill retention, and discussed the positive effects of spaced repetition. Chapter 1 closed with
an overview of intelligent tutoring systems and computer-aided learning, touching on the
issues of learning personalization and optimization.

Chapter 2 presented some insights from robotic research relevant to this work. We
described the field of social robotics and its specific design issues, and provided an overview
of case studies of robotic tutors used in education. We described cognitive stimulation therapy
as a useful tool for the retention of cognitive abilities, and slowing down the process of
dementia, and we presented some studies where robots were used in therapy. We further
described the Wizard of Oz methodology that is often used in human–robot interaction
research, and outlined three dimensions of adaptive human–robot interaction: learning from
teleoperation, learning social behavior, and learning action selection.

In Chapter 3 we focused on reinforcement learning, a machine learning method most
suitable for adaptive human–robot interaction and on-line training. We discussed some
design issues connected to the application of reinforcement learning, and described selected
reinforcement learning algorithms.

Chapter 4 dealt with cloud computing and it listed some advantages of using cloud
computing in robotic applications, with particular emphasis on its benefits to personalization.

In Chapter 5 we presented our research goals for the PhD thesis. We aim to design a self-
improving adaptive tutoring system that uses reinforcement learning for student modeling.
The system will be an improvement on current intelligent tutoring systems since it will not
require an elaborate and detailed representation of the domain being taught in order to be
able to adapt its pedagogical strategy to the student’s needs, capabilities, and skill level. We
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described how we want to use this tutoring system in the context of skill development by
applying the theory of deliberate practice, and in cognitive stimulation therapy. We will test
and evaluate the system in a long-term study with two interfaces: a web application and
a robotic tutor. By using a robotic tutor, our aim is to explore two well-observed effects
arising in human–robot interaction, the novelty effect and the effect of embodiment on human
engagement.

From a technological perspective, the implementation should result in a cloud service
providing reinforcement learning models and methods independently of use case and setting.
Such a service will be unique and applicable in further research projects. Another output of
the PhD thesis will be a web application connected to the self-improving adaptive tutoring
system.

In Chapter 6 we elaborated on our research plans by providing a short overview of our
methodology when evaluating the tutoring system in the use cases of skill development, and
cognitive stimulation therapy. We closed the chapter by a discussion of possible contributions
of the PhD thesis to various research fields.
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Healthy Aging: Novel Robotic Solutions and Internet of Things. – Telangana (India) : Avid
Science s. 2-38. - ISBN 978-93-86337-71-9

Cloud computing in social robotics / Ján Magyar – 2018. In: SCYR 2018. – Košice :
FEI TU, 2018 S. 53-56. – ISBN 978-80-553-2972-7

A cloud-based voting system for emotion recognition in human-computer interac-
tion / Ján Magyar, Gergely Magyar, Peter Sinčák – 2018. In: DISA 2018 : IEEE World
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