
Reinforcement Learning
Lukáš Hruška, MSc.

Ján Magyar, MSc.

Slovak Artificial Intelligence Meetup

January 22nd, 2020

Why do we need machine learning?

• problems are often far too complex to express formally

• try to describe a chair

• supervised vs unsupervised learning

1/22/2020 Reinforcement Learning 2

Definition of basic elements

• agent

• environment

• state

• action

• reward function

• value

• policy

1/22/2020 Reinforcement Learning 3

Dynamic programming and Markov decision
processes

• Markov chain - stochastic model, describes a sequence of possible
events, where the next event depends only on the state resulting from
the current one

• decision making approach for situations, where the outcome is not
fully in the control of the decision maker.

• goal: obtain optimal policy → describes the best action for each state
in MDP

1/22/2020 Reinforcement Learning 4

Reinforcement learning

1/22/2020 Reinforcement Learning 5

Model-free vs model-based

• model-free
• learn value function and policy

from the interaction (the agent
knows how to act, but does not
understand why)

• appropriate when collection of data
is not a problem

• random sampling methods are
included here (Monte Carlo)

• decisions are only based on
expected reward

• model-based
• first approximates the

environment’s behavior (model)
from state transitions and
outcomes

• searches model to find appropriate
actions

• appropriate when collection of
large quantities data is problematic
/ expensive

• understands, what would (is likely
to) happen if a given action is
taken

1/22/2020 Reinforcement Learning 6

Value-based vs policy-based methods

value-based

• learn a value function that maps
each state action pair to a value

• the action with the largest value
will be taken for the next step

• works well in finite action spaces,
problematic in continuous ones

policy-based

• directly optimize a policy
without using a value function

• works well with stochastic
action-space

1/22/2020 Reinforcement Learning 7

Q-learning

• model-free, value-based

• finds an optimal policy π∗ for any finite Markov decision process

• exploration vs exploitation

1/22/2020 Reinforcement Learning 8

Variatons of Q-learning

• Double Q-learning – off-policy, attempts to compensate for Q-
learning’s weakness, where it tends to overestimate action values in
some stochastic environments caused by using the maximum action
value as an approximation of the expected one

• SARSA – on-policy, the update function does not consider the optimal
action value, but the one that the algorithm would actually take

1/22/2020 Reinforcement Learning 9

Deep Q-network

• attempts to estimate Q-values using a neural network

• impractical with large or continuous action spaces

• limited to finite number of actions

1/22/2020 Reinforcement Learning 10

Actor-critic RL

• what would happen if an actor using the previous algorithms was put in a
situation with unfavorable conditions?

• what would happen, if the state and action spaces were infinite?
• infinite Q-table

• actor
• takes the current environment state and determines the best action to take from there

• policy-based

• critic
• takes the current environment state and the action and returns the score representing,

how good the action is for the given state

• value-based

1/22/2020 Reinforcement Learning 11

Asynchronous Advantage Actor-Critic Algorithm
(A3C)

• policy gradients are an online method

• only data obtained using
the current policy can be used

1/22/2020 Reinforcement Learning 12

GARIC

• actor-critic based

• action-selection network

1/22/2020 Reinforcement Learning 13

Inverse reinforcement learning

• how could we teach AI to drive a car?

• no reward function is given

• it is inferred from the observed behavior of an expert

• premise: the observed behavior is (close to) optimal

1/22/2020 Reinforcement Learning 14

Problems inherent to reinforcement learning

• faulty reward functions

• wireheading

• the agent adapting the environment

• balancing exploration and exploitation

1/22/2020 Reinforcement Learning 15

Faulty reward functions

• the agent adapts its behavior based on the observed rewards

• what if the reward function does not reflect the desired goal?

1/22/2020 Reinforcement Learning 16

Faulty reward functions – a case study

• the goal is to get the human into a state of
positive happiness and high motivation

• reward function

1. if the state does not change between two timesteps,
give a reward of 0

2. if the state changes, the reward is calculated as:
new_motivation – old_motivation + new_emotion – old_emotion

3. if the new state is positive happiness and high motivation,
give a reward of 5

1/22/2020 Reinforcement Learning 18

Solving faulty reward functions

• give sparse rewards

• define a single (or a handful) desired goal state that has a reward of 1
attached to it

• give a reward of 0 in any other case

• how does it affect training time and learning?

• introduce auxiliary tasks

• curriculum learning

1/22/2020 Reinforcement Learning 19

Wireheading

• first observed in rats, later in humans

• not present with reward signals coming from outside the environment

• during wireheading a conscious agent influences the reward signal

• especially dangerous when the reward comes from humans

1/22/2020 Reinforcement Learning 20

Wireheading in practice

• adversarial training – AlphaGo

• the agent could potentially change its opponent’s behavior

• the agent could potentially take control of the reward signal

• the agent could potentially take control of the environment

1/22/2020 Reinforcement Learning 21

Solving the wireheading problem

• distinguishing between rewards and reward signals

• reward signals should only describe the reward, not constitute it

• even if the agent takes control over the reward signal, it only loses
information – it doesn’t pay off to overwrite the reward function

1/22/2020 Reinforcement Learning 22

The agent adapting the environment

• a special case of wireheading

• the agent might be able to change the environment’s behavior

• case study – recommendation systems

1/22/2020 Reinforcement Learning 23

Balancing exploration and exploitation

• in the initial phase of learning, the agent should explore and look for
more optimal policies

• later on during learning, it should rely on previously acquired
knowledge about the environment

• critical especially in action-sensitive use cases (e.g. human—agent
interaction)

• how to balance the exploration/exploitation rate?

1/22/2020 Reinforcement Learning 24

Methods of exploration

• undirected exploration

• random exploration

• utility-driven probability distributions

• directed exploration

• counter-based exploration

• counter-based exploration with decay

• error-based exploration

• recency-based exploration

1/22/2020 Reinforcement Learning 25

Random exploration

1. define Ɛ that describes the exploration rate

2. generate random number num between 0 and 1

3. if num < Ɛ:
select random action with equal probability

else:
select action with the highest Q-value

1/22/2020 Reinforcement Learning 26

Utility-driven probability distributions

1. define Ɛ that describes the exploration rate

2. generate random number num between 0 and 1

3. if num < Ɛ:
select random action with probability based on utility

else:
select action with the highest Q-value

1/22/2020 Reinforcement Learning 27

Counter-based exploration

• prefer states that have already been explored

• select actions deterministically – the action with the highest expected
yield

𝑒𝑣𝑎𝑙𝑐 𝑎 = 𝛼 ∙ 𝑓 𝑎 +
𝑐(𝑠)

𝐸[𝑐|𝑠, 𝑎]

• α – constant (≥0) balancing exploitation and exploration

• f(a) – Q-value (expected value of carrying out action a)

• c(s) – counter of current state

• E[c|s,a] – expected counter value of state after carrying out action a

1/22/2020 Reinforcement Learning 28

Counter-based exploration with decay

• simple counter-based methods do not contain information regarding to
when a state was last visited

• prefer states that were visited earlier during the learning

• at each time tick update the counter for each state
𝑐 𝑠 ← 𝜆 ∙ 𝑐 𝑠

• λ – constant, ≈1

1/22/2020 Reinforcement Learning 29

Error-based exploration

• estimate the change of Q-value

• remember the last change of each state-action pair

• the higher the change, the more likely that neighboring states will be
updated

𝑒𝑣𝑎𝑙𝑐 𝑎 = 𝛼 ∙ 𝑓 𝑎 +
𝑐 𝑠

𝐸 𝑐 𝑠, 𝑎
+ 𝛽 ∙ 𝐸 Δ 𝑉𝑙𝑎𝑠𝑡 𝑠, 𝑎

• β – constant (>0) determining the error-heuristic

1/22/2020 Reinforcement Learning 30

Recency-based exploration

• prefer adjacent states that recurred less recently

• for each state remember a recency value ρ(s) that describes the number
of actions carried out since the last occurrence of the state

𝑒𝑣𝑎𝑙𝑐 𝑎 = 𝛼 ∙ 𝑓 𝑎 + 𝐸[𝜌|𝑠, 𝑎]

• in the beginning, this sort of action selection leads to a quicker
exploration of the entire state space

1/22/2020 Reinforcement Learning 31

Adaptive methods comparison

1/22/2020 Reinforcement Learning 32

Value-difference based exploration

• uses softmax Boltzmann distribution

• exploration probability defined and updated for each state

• the agent should explore more states where the knowledge is uncertain

𝑓 𝑠, 𝑎, 𝜎 =
1 − 𝑒

−|𝑄𝑡+1 𝑠,𝑎 −𝑄𝑡 𝑠,𝑎 |
𝜎

1 + 𝑒
−|𝑄𝑡+1 𝑠,𝑎 −𝑄𝑡 𝑠,𝑎 |

𝜎
휀𝑡+1 𝑠 = 𝛿 ∙ 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝜎 + (1 − 𝛿) ∙ 휀𝑡

• σ – inverse sensitivity

• δ – influence of the action on exploration rate; 𝛿 =
1

|𝐴(𝑠)|

1/22/2020 Reinforcement Learning 33

Reinforcement Learning 34

Further reading

1. Tokic, Michel. "Adaptive ε-greedy exploration in reinforcement
learning based on value differences." In Annual Conference on
Artificial Intelligence, pp. 203-210. Springer, Berlin, Heidelberg,
2010.

2. Thrun, Sebastian B. "Efficient exploration in reinforcement
learning." (1992).

questions?

