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Why do we need machine learning?

• problems are often far too complex to express formally

• try to describe a chair

• supervised vs unsupervised learning
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Definition of basic elements

• agent

• environment

• state

• action

• reward function

• value

• policy
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Dynamic programming and Markov decision 
processes

• Markov chain - stochastic model, describes a sequence of possible 
events, where the next event depends only on the state resulting from 
the current one

• decision making approach for situations, where the outcome is not 
fully in the control of the decision maker.

• goal: obtain optimal policy → describes the best action for each state 
in MDP

1/22/2020 Reinforcement Learning 4



Reinforcement learning
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Model-free vs model-based

• model-free
• learn value function and policy 

from the interaction (the agent 
knows how to act, but does not 
understand why)

• appropriate when collection of data 
is not a problem

• random sampling methods are 
included here (Monte Carlo)

• decisions are only based on 
expected reward

• model-based
• first approximates the 

environment’s behavior (model) 
from state transitions and 
outcomes

• searches model to find appropriate 
actions

• appropriate when collection of 
large quantities data is problematic 
/ expensive

• understands, what would (is likely 
to) happen if a given action is 
taken
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Value-based vs policy-based methods

value-based

• learn a value function that maps 
each state action pair to a value

• the action with the largest value 
will be taken for the next step

• works well in finite action spaces, 
problematic in continuous ones

policy-based

• directly optimize a policy 
without using a value function

• works well with stochastic 
action-space
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Q-learning

• model-free, value-based

• finds an optimal policy π∗ for any finite Markov decision process

• exploration vs exploitation
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Variatons of Q-learning

• Double Q-learning – off-policy, attempts to compensate for Q-
learning’s weakness, where it tends to overestimate action values in 
some stochastic environments caused by using the maximum action 
value as an approximation of the expected one

• SARSA – on-policy, the update function does not consider the optimal 
action value, but the one that the algorithm would actually take
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Deep Q-network

• attempts to estimate Q-values using a neural network

• impractical with large or continuous action spaces

• limited to finite number of actions
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Actor-critic RL

• what would happen if an actor using the previous algorithms was put in a 
situation with unfavorable conditions?

• what would happen, if the state and action spaces were infinite?
• infinite Q-table

• actor
• takes the current environment state and determines the best action to take from there

• policy-based

• critic
• takes the current environment state and the action and returns the score representing, 

how good the action is for the given state

• value-based
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Asynchronous Advantage Actor-Critic Algorithm 
(A3C)

• policy gradients are an online method

• only data obtained using
the current policy can be used
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GARIC

• actor-critic based

• action-selection network
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Inverse reinforcement learning

• how could we teach AI to drive a car?

• no reward function is given

• it is inferred from the observed behavior of an expert

• premise: the observed behavior is (close to) optimal
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Problems inherent to reinforcement learning

• faulty reward functions

• wireheading

• the agent adapting the environment

• balancing exploration and exploitation
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Faulty reward functions

• the agent adapts its behavior based on the observed rewards

• what if the reward function does not reflect the desired goal?
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Faulty reward functions – a case study

• the goal is to get the human into a state of
positive happiness and high motivation

• reward function

1. if the state does not change between two timesteps,
give a reward of 0

2. if the state changes, the reward is calculated as:
new_motivation – old_motivation + new_emotion – old_emotion

3. if the new state is positive happiness and high motivation,
give a reward of 5
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Solving faulty reward functions

• give sparse rewards

• define a single (or a handful) desired goal state that has a reward of 1 
attached to it

• give a reward of 0 in any other case

• how does it affect training time and learning?

• introduce auxiliary tasks

• curriculum learning
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Wireheading

• first observed in rats, later in humans

• not present with reward signals coming from outside the environment

• during wireheading a conscious agent influences the reward signal

• especially dangerous when the reward comes from humans
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Wireheading in practice

• adversarial training – AlphaGo

• the agent could potentially change its opponent’s behavior

• the agent could potentially take control of the reward signal

• the agent could potentially take control of the environment
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Solving the wireheading problem

• distinguishing between rewards and reward signals

• reward signals should only describe the reward, not constitute it

• even if the agent takes control over the reward signal, it only loses 
information – it doesn’t pay off to overwrite the reward function
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The agent adapting the environment

• a special case of wireheading

• the agent might be able to change the environment’s behavior

• case study – recommendation systems
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Balancing exploration and exploitation

• in the initial phase of learning, the agent should explore and look for 
more optimal policies

• later on during learning, it should rely on previously acquired 
knowledge about the environment

• critical especially in action-sensitive use cases (e.g. human—agent 
interaction)

• how to balance the exploration/exploitation rate?
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Methods of exploration

• undirected exploration

• random exploration

• utility-driven probability distributions

• directed exploration

• counter-based exploration

• counter-based exploration with decay

• error-based exploration

• recency-based exploration
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Random exploration

1. define Ɛ that describes the exploration rate

2. generate random number num between 0 and 1

3. if num < Ɛ:
select random action with equal probability

else:
select action with the highest Q-value
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Utility-driven probability distributions

1. define Ɛ that describes the exploration rate

2. generate random number num between 0 and 1

3. if num < Ɛ:
select random action with probability based on utility

else:
select action with the highest Q-value
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Counter-based exploration

• prefer states that have already been explored

• select actions deterministically – the action with the highest expected 
yield

𝑒𝑣𝑎𝑙𝑐 𝑎 = 𝛼 ∙ 𝑓 𝑎 +
𝑐(𝑠)

𝐸[𝑐|𝑠, 𝑎]

• α – constant (≥0) balancing exploitation and exploration

• f(a) – Q-value (expected value of carrying out action a)

• c(s) – counter of current state

• E[c|s,a] – expected counter value of state after carrying out action a
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Counter-based exploration with decay

• simple counter-based methods do not contain information regarding to 
when a state was last visited

• prefer states that were visited earlier during the learning

• at each time tick update the counter for each state
𝑐 𝑠 ← 𝜆 ∙ 𝑐 𝑠

• λ – constant, ≈1
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Error-based exploration

• estimate the change of Q-value

• remember the last change of each state-action pair

• the higher the change, the more likely that neighboring states will be 
updated

𝑒𝑣𝑎𝑙𝑐 𝑎 = 𝛼 ∙ 𝑓 𝑎 +
𝑐 𝑠

𝐸 𝑐 𝑠, 𝑎
+ 𝛽 ∙ 𝐸 Δ  𝑉𝑙𝑎𝑠𝑡 𝑠, 𝑎

• β – constant (>0) determining the error-heuristic
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Recency-based exploration

• prefer adjacent states that recurred less recently

• for each state remember a recency value ρ(s) that describes the number 
of actions carried out since the last occurrence of the state

𝑒𝑣𝑎𝑙𝑐 𝑎 = 𝛼 ∙ 𝑓 𝑎 + 𝐸[𝜌|𝑠, 𝑎]

• in the beginning, this sort of action selection leads to a quicker 
exploration of the entire state space
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Adaptive methods comparison
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Value-difference based exploration

• uses softmax Boltzmann distribution

• exploration probability defined and updated for each state

• the agent should explore more states where the knowledge is uncertain

𝑓 𝑠, 𝑎, 𝜎 =
1 − 𝑒

−|𝑄𝑡+1 𝑠,𝑎 −𝑄𝑡 𝑠,𝑎 |
𝜎

1 + 𝑒
−|𝑄𝑡+1 𝑠,𝑎 −𝑄𝑡 𝑠,𝑎 |

𝜎
휀𝑡+1 𝑠 = 𝛿 ∙ 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝜎 + (1 − 𝛿) ∙ 휀𝑡

• σ – inverse sensitivity

• δ – influence of the action on exploration rate; 𝛿 =
1

|𝐴(𝑠)|
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questions?


